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CHAPTER OPENING PHOTO: Supersonic flow past a scale model of the X-15 experimental aircraft.
An object moving through a fluid at supersonic speed (Mach number greater than one) creates
shock waves (a discontinuity in flow conditions shown by the light and dark lines), which
would be heard as a sonic boom as the object passes overhead. (Photograph courtesy of NASA)

11Compressible 
Flow

Learning Objectives
After completing this chapter, you should be able to:

■ distinguish between incompressible and compressible flows, and know when

the approximations associated with assuming fluid incompressibility are

acceptable.

■ understand some important features of different categories of compressible

flows of ideal gases.

■ explain speed of sound and Mach number and their practical significance.

■ solve useful problems involving isentropic and nonisentropic flows including

flows across normal shock waves.

■ appreciate the compelling similarities between compressible flows of gases

and open-channel flows of liquids.

■ move on to understanding more advanced concepts about compressible

flows.

Most first courses in fluid mechanics concentrate on constant density 1incompressible2 flows. In

earlier chapters of this book, we mainly considered incompressible flow behavior. In a few instances,

variable density 1compressible2 flow effects were covered briefly. The notion of an incompressible

fluid is convenient because when constant density and constant 1including zero2 viscosity are as-

sumed, problem solutions are greatly simplified. Also, fluid incompressibility allows us to build

on the Bernoulli equation as was done, for example, in Chapter 5. Preceding examples should have

convinced us that nearly incompressible flows are common in everyday experiences.

Any study of fluid mechanics would, however, be incomplete without a brief introduction to

compressible flow behavior. Fluid compressibility is a very important consideration in numerous

engineering applications of fluid mechanics. For example, the measurement of high-speed flow veloc-

ities requires compressible flow theory. The flows in gas turbine engine components are generally com-

pressible. Many aircraft fly fast enough to involve compressible flow.
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The variation of fluid density for compressible flows requires attention to density and other

fluid property relationships. The fluid equation of state, often unimportant for incompressible

flows, is vital in the analysis of compressible flows. Also, temperature variations for compress-

ible flows are usually significant, and thus the energy equation is important. Curious phenomena

can occur with compressible flows. For example, with compressible flows we can have fluid ac-

celeration because of friction, fluid deceleration in a converging duct, fluid temperature decrease

with heating, and the formation of abrupt discontinuities in flows across which fluid properties

change appreciably.

For simplicity, in this introductory study of compressibility effects we mainly consider the

steady, one-dimensional, constant 1including zero2 viscosity, compressible flow of an ideal gas.

We limit our study to compressibility due to high-speed flow. In this chapter, one-dimensional

flow refers to flow involving uniform distributions of fluid properties over any flow cross-

sectional area. Both frictionless and frictional compressible flows are consid-

ered. If the change in volume associated with a change of pressure is considered a measure of

compressibility, our experience suggests that gases and vapors are much more compressible than

liquids. We focus our attention on the compressible flow of a gas because such flows occur 

often. We limit our discussion to ideal gases, since the equation of state for an ideal gas is un-

complicated, yet representative of actual gases at pressures and temperatures of engineering

interest, and because the flow trends associated with an ideal gas are generally applicable to

other compressible fluids.

An excellent film about compressible flow is available 1see Ref. 12. This resource is a use-

ful supplement to the material covered in this chapter.

1m � 021m � 02
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11.1 Ideal Gas Relationships

Before we can proceed to develop compressible flow equations, we need to become more famil-

iar with the fluid we will work with, the ideal gas. Specifically, we must learn how to evaluate

ideal gas property changes. The equation of state for an ideal gas is

(11.1)

We have already discussed fluid pressure, p, density, and temperature, T, in earlier chapters. The

gas constant, R, represents a constant for each distinct ideal gas or mixture of ideal gases, where

(11.2)

With this notation, is the universal gas constant and is the molecular weight of the ideal gas or

gas mixture. Listed in Table 1.4 are values of the gas constants of some commonly used gases. Know-

ing the pressure and temperature of a gas, we can estimate its density. Nonideal gas state equations

are beyond the scope of this text, and those interested in this topic are directed to texts on engineer-

ing thermodynamics, for example, Ref. 2. Note that the trends of ideal gas flows are generally good

indicators of what nonideal gas flow behavior is like.

For an ideal gas, internal energy, is part of the stored energy of the gas as explained in

Section 5.3 and is considered to be a function of temperature only 1Ref. 22. Thus, the ideal gas spe-

cific heat at constant volume, can be expressed as

(11.3)

where the subscript on the partial derivative refers to differentiation at constant specific volume,

From Eq. 11.3 we conclude that for a particular ideal gas, is a function of tempera-

ture only. Equation 11.3 can be rearranged to yield

dǔ � cv dT

cvv � 1�r.
v

cv � a
0ǔ

0T
b

v
�

dǔ

dT

cv,

ǔ,

Mgasl

R �
l

Mgas

r,

r �
p

RT

We consider ideal
gas flows only.

V11.1 Lighter
flame
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Thus,

(11.4)

Equation 11.4 is useful because it allows us to evaluate the change in internal energy, as-

sociated with ideal gas flow from section 112 to section 122 in a flow. For simplicity, we can assume

that is constant for a particular ideal gas and obtain from Eq. 11.4

(11.5)

Actually, for a particular gas varies with temperature 1see Ref. 22. However, for moderate changes

in temperature, the constant assumption is reasonable.

The fluid property enthalpy, is defined as

(11.6)

It combines internal energy, and pressure energy, and is useful when dealing with the en-

ergy equation 1Eq. 5.692. For an ideal gas, we have already stated that

From the equation of state 1Eq. 11.12

Thus, it follows that

Since for an ideal gas, enthalpy is a function of temperature only, the ideal gas specific heat at con-

stant pressure, can be expressed as

(11.7)

where the subscript p on the partial derivative refers to differentiation at constant pressure, and 

is a function of temperature only. The rearrangement of Eq. 11.7 leads to

and

(11.8)

Equation 11.8 is useful because it allows us to evaluate the change in enthalpy, associ-

ated with ideal gas flow from section 112 to section 122 in a flow. For simplicity, we can assume

that is constant for a specific ideal gas and obtain from Eq. 11.8

(11.9)

As is true for the value of for a given gas varies with temperature. Nevertheless, for moder-

ate changes in temperature, the constant assumption is reasonable.

From Eqs. 11.5 and 11.9 we see that changes in internal energy and enthalpy are related

to changes in temperature by values of and We turn our attention now to developing use-

ful relationships for determining and Combining Eqs. 11.6 and 11.1 we get

(11.10)ȟ � ǔ � RT

cp.cv

cp.cv

cp

cpcv,

ȟ2 � ȟ1 � cp1T2 � T12

cp

ȟ2 � ȟ1,

ȟ2 � ȟ1 � �
T2

T1

 cp dT

dȟ � cp dT

cp

cp � a
0ȟ

0T
b

p

�
dȟ

dT

cp,

ȟ � ȟ1T2

p

r
� RT

ǔ � ǔ1T2

p�r,ǔ,

ȟ � ǔ �
p

r

ȟ,

cv

cv

ǔ2 � ǔ1 � cv1T2 � T12

cv

ǔ2 � ǔ1,

ǔ2 � ǔ1 � �
T2

T1

 cv dT
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For moderate tem-
perature changes,
specific heat values
can be considered
constant.
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Differentiating Eq. 11.10 leads to

or

(11.11)

From Eqs. 11.3, 11.7, and 11.11 we conclude that

(11.12)

Equation 11.12 indicates that the difference between and is constant for each ideal gas re-

gardless of temperature. Also If the specific heat ratio, k, is defined as

(11.13)

then combining Eqs. 11.12 and 11.13 leads to

(11.14)

and

(11.15)

Actually, and k are all somewhat temperature dependent for any ideal gas. We will assume

constant values for these variables in this book. Values of k and R for some commonly used gases at

nominal temperatures are listed in Table 1.4. These tabulated values can be used with Eqs. 11.13 and

11.14 to determine the values of and Example 11.1 demonstrates how internal energy and en-

thalpy changes can be calculated for a flowing ideal gas having constant and cv.cp

cv.cp

cp, cv,

cv �
R

k � 1

cp �
Rk

k � 1

k �
cp

cv

cp 7 cv.

cvcp

cp � cv � R

dȟ

dT
�

dǔ

dT
� R

dȟ � dǔ � R dT
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The gas constant is
related to the spe-
cific heat values.

GIVEN Air flows steadily between two sections in a long,

straight portion of 10 cm diameter pipe as is indicated in Fig. E11.1.

The uniformly distributed temperature and pressure at each section

are kPa, and kPa. T2 � 252 k, p2 � 127T1 � 300 k, p1 � 690

Internal Energy, Enthalpy, and Density for an Ideal GasEXAMPLE 11.1

SOLUTION

From Eq. 2 we obtain

(3) � 717 J�kg � K

 cv �
286.9

11.4 � 12
 J�kg � K

(a) Assuming air behaves as an ideal gas, we can use Eq. 11.5 to

evaluate the change in internal energy between sections 112 and 122.
Thus

(1)

From Eq. 11.15 we have

(2)

and from Table 1.4, and Throughout this

book, we use the nominal values of k for common gases listed

in Table 1.4 and consider these values as being representative.

k � 1.4.R � 286.9

cv �
R

k � 1

ǔ2 � ǔ1 � cv1T2 � T12

■ Figure E11.1

DSection (2)Section (1)Flow

Control volumePipe

D1 = D2 = 10 cm

FIND Calculate the 1a2 change in internal energy between sec-

tions 112 and 122, 1b2 change in enthalpy between sections 112 and

122, and 1c2 change in density between sections 112 and 122.
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For compressible flows, changes in the thermodynamic property entropy, s, are important.

For any pure substance including ideal gases, the “first T ds equation” is 1see Ref. 22

(11.16)

where T is absolute temperature, s is entropy, is internal energy, p is absolute pressure, and is

density. Differentiating Eq. 11.6 leads to

(11.17)

By combining Eqs. 11.16 and 11.17, we obtain

(11.18)

Equation 11.18 is often referred to as the “second T ds equation.” For an ideal gas, Eqs. 11.1, 11.3,

and 11.16 can be combined to yield

(11.19)

and Eqs. 11.1, 11.7, and 11.18 can be combined to yield

(11.20)ds � cp 
dT

T
� R 

dp

p

ds � cv 

dT

T
�

R

1�r
 d a

1

r
b

T ds � dȟ �  a
1

r
b dp

dȟ � dǔ � pd a
1

r
b � a

1

r
b dp

rǔ

T ds � dǔ � pd  a
1

r
b
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Combining Eqs. 1 and 3 yields

(Ans)

(b) For enthalpy change we use Eq. 11.9. Thus

(4)

where since we obtain

(5)

From Eqs. 4 and 5 we obtain

(Ans)

(c) For density change we use the ideal gas equation of state

1Eq. 11.12 to get

(6)r2 � r1 �
p2

RT2

�
p1

RT1

�
1

R
 a

p2

T2

�
p1

T1

b

 � �48,192 J�kg # K

 � 1252 K � 300 K2

 ȟ2 � ȟ1 � cp1T2 � T12 � 1004 J�kg # K

 � 1004 J�kg # K

cp � kcv � 11.42 717 J�kg # K

k � cp�cv

ȟ2 � ȟ1 � cp1T2 � T12

 � �34,416 J�kg

 � 1252 K � 300 K2

 ǔ2 � ǔ1 � cv1T2 � T12 � 717 J�kg # K

Using the pressures and temperatures given in the problem state-

ment we calculate from Eq. 6

or

(Ans)

COMMENT This is a significant change in density when

compared with the upstream density

Compressibility effects are important for this flow.

 � 8.02 kg�m3

r1 �
p1

RT1

�
690 � 103 Pa

1286.9 J�kg # K2 1300 K2

 r2 � r1 � �6.26 kg�m3

 �
690 � 103 Pa

300 K
d

 � c
127 � 103 Pa

252 K

 r2 � r1 �
1

286.9 J�kg # K

Changes in entropy
are important be-
cause they are re-
lated to loss of
available energy.
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If and are assumed to be constant for a given gas, Eqs. 11.19 and 11.20 can be integrated to get

(11.21)

and

(11.22)

Equations 11.21 and 11.22 allow us to calculate the change of entropy of an ideal gas flowing from

one section to another with constant specific heat values 1 and 2.cvcp

s2 � s1 � cp ln 
T2

T1

� R ln 
p2

p1

s2 � s1 � cv ln 
T2

T1

� R ln 
r1

r2

cvcp
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Changes in entropy
are related to
changes in temper-
ature, pressure, and
density.

GIVEN Consider the airflow of Example 11.1.

Entropy for an Ideal GasEXAMPLE 11.2

SOLUTION

we get

or

(Ans)

From Eq. 11.22,

(4)

By substituting known values into Eq. 4 we obtain

or

(Ans)

COMMENT As anticipated, both Eqs. 11.21 and 11.22 yield

the same result for the entropy change,

Note that since the ideal gas equation of state was used in the

derivation of the entropy difference equations, both the pressures

and temperatures used must be absolute.

s2 � s1.

s2 � s1 � 310 J�kg # K

� 1286.9 J�kg # K2 ln a
127 � 103 Pa

690 � 103 Pa
b

 s2 � s1 � 11004 J�kg # K2 ln a
252 K

300 K
b

s2 � s1 � cp ln 
T2

T1

� R ln 
p2

p1

 s2 � s1 � 310 J�kg # K

 � 1286.9 J�kg # K2 ln 4.56

 s2 � s1 � 1717 J�kg2 ln a
252 K

300 K
b

Assuming that the flowing air in Fig. E11.1 behaves as an ideal

gas, we can calculate the entropy change between sections by us-

ing either Eq. 11.21 or Eq. 11.22. We use both to demonstrate that

the same result is obtained either way.

From Eq. 11.21,

(1)

To evaluate from Eq. 1 we need the density ratio,

which can be obtained from the ideal gas equation of state 

1Eq. 11.12 as

(2)

and thus from Eqs. 1 and 2,

(3)

By substituting values already identified in the Example 11.1

problem statement and solution into Eq. 3 with

a
p1

T1

b a
T2

p2

b � a
690 � 103 Pa

300 K
b a

252 K

127 � 103 Pa
b � 4.56

s2 � s1 � cv ln 
T2

T1

� R ln c a
p1

T1

b a
T2

p2

b d

r1

r2

� a
p1

T1

b a
T2

p2

b

r1�r2,s2 � s1

s2 � s1 � cv ln 
T2

T1

� R ln 
r1

r2

If internal energy, enthalpy, and entropy changes for ideal gas flow with variable specific heats

are desired, Eqs. 11.4, 11.8, and 11.19 or 11.20 must be used as explained in Ref. 2. Detailed tables

1see, for example, Ref. 32 are available for variable specific heat calculations.

The second law of thermodynamics requires that the adiabatic and frictionless flow of any fluid

results in Constant entropy flow is called isentropic flow. For the isentropic

flow of an ideal gas with constant and we get from Eqs. 11.21 and 11.22

(11.23)cv ln 
T2

T1

� R ln 
r1

r2

� cp ln 
T2

T1

� R ln 
p2

p1

� 0

cv,cp

ds � 0 or s2 � s1 � 0.

FIND Calculate the change in entropy, between sec-

tions 112 and 122.
s2 � s1,
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By combining Eq. 11.23 with Eqs. 11.14 and 11.15 we obtain

(11.24)

which is a useful relationship between temperature, density, and pressure for the isentropic flow

of an ideal gas. From Eq. 11.24 we can conclude that

(11.25)

for an ideal gas with constant and flowing isentropically, a result already used without proof

earlier in Chapters 1, 3, and 5.

cvcp

p

rk
� constant

a
T2

T1

b
k�1k�12

� a
r2

r1

b
k

� a
p2

p1

b
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F l u i d s  i n  t h e  N e w s

Hilsch tube (Ranque vortex tube) Years ago (around 1930) a

French physics student (George Ranque) discovered that apprecia-

bly warmer and colder portions of rapidly swirling airflow could be

separated in a simple apparatus consisting of a tube open at both

ends into which was introduced, somewhere in between the two

openings, swirling air at high pressure. Warmer air near the outer

portion of the swirling air flowed out one open end of the tube

through a simple valve and colder air near the inner portion of the

swirling air flowed out the opposite end of the tube. Rudolph

Hilsch, a German physicist, improved on this discovery (ca. 1947).

Hot air temperatures of 127 °C and cold air temperatures of �46 °C

have been claimed in an optimized version of this apparatus. Thus

far the inefficiency of the process has prevented it from being

widely adopted. (See Problem 11.4LL.)

The Mach number, Ma, was introduced in Chapters 1 and 7 as a dimensionless measure of com-

pressibility in a fluid flow. In this and subsequent sections, we develop some useful relationships

involving the Mach number. The Mach number is defined as the ratio of the value of the local flow

velocity, V, to the local speed of sound, c. In other words,

What we perceive as sound generally consists of weak pressure pulses that move through air with

a Mach number of one. When our eardrums respond to a succession of moving pressure pulses,

we hear sounds.

To better understand the notion of speed of sound, we analyze the one-dimensional fluid me-

chanics of an infinitesimally thin, weak pressure pulse moving at the speed of sound through a

fluid at rest 1see Fig. 11.1a2. Ahead of the pressure pulse, the fluid velocity is zero, and the fluid

pressure and density are p and Behind the pressure pulse, the fluid velocity has changed by an

amount and the pressure and density of the fluid have also changed by amounts and 

We select an infinitesimally thin control volume that moves with the pressure pulse as is sketched

dr.dpdV,

r.

Ma �
V

c

11.2 Mach Number and Speed of Sound

Mach number is
the ratio of local
flow and sound
speeds.

■ Figure 11.1 (a) Weak pressure pulse moving through a fluid at rest. 
(b) The flow relative to a control volume containing a weak pressure pulse.

c

p

A A

V = 0

ρ

p

V

ρ δρ

δ

(a)

Control volume

Weak pressure pulse

+

δρ+

c
c

p

A A

ρ
p

V

ρ δρ

δ

(b)

Control volume

Weak pressure pulse

+

–

δρ+
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in Fig. 11.1a. The speed of the weak pressure pulse is considered constant and in one direction

only; thus, our control volume is inertial.

For an observer moving with this control volume 1Fig. 11.1b2, it appears as if fluid is enter-

ing the control volume through surface area A with speed c at pressure p and density and leav-

ing the control volume through surface area A with speed pressure and density

When the continuity equation 1Eq. 5.162 is applied to the flow through this control vol-

ume, the result is

(11.26)

or

(11.27)

Since is much smaller than the other terms in Eq. 11.27, we drop it from further consid-

eration and keep

(11.28)

The linear momentum equation 1Eq. 5.292 can also be applied to the flow through the control vol-

ume of Fig. 11.1b. The result is

(11.29)

Note that any frictional forces are considered as being negligibly small. We again neglect higher

order terms [such as compared to c for example] and combine Eqs. 11.26 and 11.29

to get

or

(11.30)

From Eqs. 11.28 1continuity2 and 11.30 1linear momentum2 we obtain

or

(11.31)

This expression for the speed of sound results from application of the conservation of mass and

conservation of linear momentum principles to the flow through the control volume of Fig. 11.1b.

These principles were similarly used in Section 10.2.1 to obtain an expression for the speed of sur-

face waves traveling on the surface of fluid in a channel.

The conservation of energy principle can also be applied to the flow through the control vol-

ume of Fig. 11.1b. If the energy equation 1Eq. 5.1032 is used for the flow through this control vol-

ume, the result is

(11.32)

For gas flow we can consider g as being negligibly small in comparison to the other terms in the

equation. Also, if we assume that the flow is frictionless, then and Eq. 11.32 becomes

or, neglecting compared to c we obtain

(11.33)r dV �
dp

c

dV,1dV22

dp

r
�
1c � dV22

2
�

c2

2
� 0

d1loss2 � 0

dz

dp

r
� d a

V 2

2
b � g dz � d1loss2

c � B
dp

dr

c2 �
dp

dr

rdV �
dp

c

�crcA � 1c � dV2rAc � �dpA

dV,1dV22

�crcA � 1c � dV2 1r � dr2 1c � dV2A � pA � 1p � dp2A

r dV � c dr

1dr2 1dV2

rc � rc � r dV � c dr � 1dr2 1dV2

rAc � 1r � dr2A1c � dV2

r � dr.
p � dp,c � dV,

r
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The changes in fluid
properties across 
a sound wave are
very small compared
to their local values.
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By combining Eqs. 11.28 1continuity2 and 11.33 1energy2 we again find that

which is identical to Eq. 11.31. Thus, the conservation of linear momentum and the conservation

of energy principles lead to the same result. If we further assume that the frictionless flow through

the control volume of Fig. 11.1b is adiabatic 1no heat transfer2, then the flow is isentropic. In the

limit, as becomes vanishingly small 

(11.34)

where the subscript s is used to designate that the partial differentiation occurs at constant entropy.

Equation 11.34 suggests to us that we can calculate the speed of sound by determining the

partial derivative of pressure with respect to density at constant entropy. For the isentropic flow of

an ideal gas 1with constant and 2, we learned earlier 1Eq. 11.252 that

and thus

(11.35)

Thus, for an ideal gas

(11.36)

From Eq. 11.36 and the charts in the margin we conclude that for a given temperature, the speed

of sound, c, in hydrogen and in helium, is higher than in air.

More generally, the bulk modulus of elasticity, of any fluid including liquids is defined

as 1see Section 1.7.12

(11.37)

Thus, in general, from Eqs. 11.34 and 11.37,

(11.38)

Values of the speed of sound are tabulated in Tables B.1 and B.2 for water and in 

Tables B.3 and B.4 for air. From experience we know that air is more easily compressed than wa-

ter. Note from the values of c in Tables B.1 through B.4 and the graph in the margin that the

speed of sound in air is much less than it is in water. From Eq. 11.37, we can conclude that if a

fluid is truly incompressible, its bulk modulus would be infinitely large, as would be the speed

of sound in that fluid. Thus, an incompressible flow must be considered an idealized approxima-

tion of reality.

c � B
Ev

r

Ev �
dp

dr�r
� r a

0p

0r
b

s

Ev,

c � 2RTk

a
0p

0r
b

s

� 1constant2 krk�1 �
p

rk
 krk�1 �

p

r
 k � RTk

p � 1constant2 1rk2

cvcp

c � Ba
0p

0r
b

s

1dp S 0p S 02dp

c � B
dp

dr
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Speed of sound is
larger in fluids that
are more difficult to
compress.

F l u i d s  i n  t h e  N e w s

Sonification The normal human ear is capable of detecting

even very subtle sound patterns produced by sound waves.
Most of us can distinguish the bark of a dog from the meow of

a cat or the roar of a lion, or identify a person’s voice on the

telephone before they identify who is calling. The number of

“things” we can identify from subtle sound patterns is enor-

mous. Combine this ability with the power of computers to

transform the information from sensor transducers into varia-

tions in pitch, rhythm, and volume and you have sonification,

the representation of data in the form of sound. With this

emerging technology, pathologists may soon learn to “hear”

abnormalities in tissue samples, engineers may “hear” flaws in

gas turbine engine blades being inspected, and scientists may

“hear” a desired attribute in a newly invented material. Perhaps

the concept of hearing the trends in data sets may become as

commonplace as seeing them. Analysts may listen to the stock

market and make decisions. Of course, none of this can happen

in a vacuum.

1800

1200

Water

Air
600

0 50 100
0

c,
 m

/s

T, °C
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GIVEN Consider the data in Table B.2. FIND Verify the speed of sound for air at .0 °C

SOLUTION

Speed of Sound

Thus, since 

we obtain

(Ans)

COMMENT The value of the speed of sound calculated with

Eq. 11.36 agrees very well with the value of c listed in Table B.2.

The ideal gas approximation does not compromise this result sig-

nificantly.

c � 331.4 m�s

1 1m�s22,
1 J�kg � 1 N # m�kg � 1 1kg # m�s22 # m�kg �

 � 331.4 1J�kg21�2
 c � 2 3 1286.92 J� 1kg # K2 4 1273.15 K2 11.4012

EXAMPLE 11.3

In Table B.2, we find the speed of sound of air at given as

331.4 m�s. Assuming that air behaves as an ideal gas, we can cal-

culate the speed of sound from Eq. 11.36 as

(1)

The value of the gas constant is obtained from Table 1.4 as

and the specific heat ratio is listed in Table B.2 as

By substituting values of R, k, and T into Eq. 1 we obtain

k � 1.401

R � 286.9 J� 1kg # K2

c � 2RTk

0 °C

In Section 3.8.1, we learned that the effects of compressibility become more significant as the Mach

number increases. For example, the error associated with using in calculating the stagna-
tion pressure of an ideal gas increases at larger Mach numbers. From Fig. 3.24 we can conclude

that incompressible flows can only occur at low Mach numbers.

Experience has also demonstrated that compressibility can have a large influence on other

important flow variables. For example, in Fig. 11.2 the variation of drag coefficient with Reynolds

rV 2�2

11.3 Categories of Compressible Flow

■ Figure 11.2 The variation of the drag coefficient of a
sphere with Reynolds number and Mach number. (Adapted
from Fig. 1.8 in Ref. 1 of Chapter 9.)
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number and Mach number is shown for airflow over a sphere. Compressibility effects can be of

considerable importance.

To further illustrate some curious features of compressible flow, a simplified example is con-

sidered. Imagine the emission of weak pressure pulses from a point source. These pressure waves

are spherical and expand radially outward from the point source at the speed of sound, c. If a pres-

sure wave is emitted at different times, we can determine where several waves will be at a

common instant of time, t, by using the relationship

where r is the radius of the sphere-shaped wave emitted at time For a stationary point

source, the symmetrical wave pattern shown in Fig. 11.3a is involved.

When the point source moves to the left with a constant velocity, V, the wave pattern is no

longer symmetrical. In Figs. 11.3b, 11.3c, and 11.3d are illustrated the wave patterns at s for

different values of Also shown with a “ ” are the positions of the moving point source at val-

ues of time, t, equal to 0 s, 1 s, 2 s, and 3 s. Knowing where the point source has been at differ-

ent instances is important because it indicates to us where the different waves originated.

From the pressure wave patterns of Fig. 11.3, we can draw some useful conclusions. Before

doing this we should recognize that if instead of moving the point source to the left, we held the

point source stationary and moved the fluid to the right with velocity V, the resulting pressure wave

patterns would be identical to those indicated in Fig. 11.3.

�V.

t � 3

� twave.

r � 1t � twave2c

twave,
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3c 2c

c

(a) (b)

c
2c

3V

2V

V

3c

(c)

c
2c

3c

Zone of actionZone of silence

Tangent plane
(Mach wave)

V = c

2V = 2c

3V = 3c

(d)

c
2c

3V
2V

V

3c

α

Zone of silence

Mach cone

Zone of action

Wave emitted at t = 0 s Wave emitted at t = 1 s Wave emitted at t = 2 s

Source at t = 1, 2, or 3 sSource at t = 0 s

■ Figure 11.3 (a) Pressure waves at (b) pressure waves at t � 3 s,t � 3 s, V � 0;
(c) pressure waves at (d ) pressure waves at V 7 c.t � 3 s,V � c;t � 3 s,V 6 c;

The wave pattern
from a moving
source is not 
symmetrical.

V11.2 Waves on a
water surface
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When the point source moves in fluid at rest 1or when fluid moves past a stationary point

source2, the pressure wave patterns vary in asymmetry, with the extent of asymmetry depending

on the ratio of the point source 1or fluid2 velocity and the speed of sound. When the wave

pattern is similar to the one shown in Fig. 11.3b. This flow is considered subsonic and compress-

ible. A stationary observer will hear a different sound frequency coming from the point source de-

pending on where the observer is relative to the source because the wave pattern is asymmetrical.

We call this phenomenon the Doppler effect. Pressure information can still travel unrestricted

throughout the flow field, but not symmetrically or instantaneously.

When pressure waves are not present ahead of the moving point source. The flow

is sonic. If you were positioned to the left of the moving point source, you would not hear the

point source until it was coincident with your location. For flow moving past a stationary point

source at the speed of sound the pressure waves are all tangent to a plane that is per-

pendicular to the flow and that passes through the point source. The concentration of pressure

waves in this tangent plane suggests the formation of a significant pressure variation across the

plane. This plane is often called a Mach wave. Note that communication of pressure information

is restricted to the region of flow downstream of the Mach wave. The region of flow upstream of

the Mach wave is called the zone of silence, and the region of flow downstream of the tangent

plane is called the zone of action.

When the flow is supersonic, and the pressure wave pattern resembles the one de-

picted in Fig. 11.3d. A cone 1Mach cone2 that is tangent to the pressure waves can be con-

structed to represent the Mach wave that separates the zone of silence from the zone of action

in this case. The communication of pressure information is restricted to the zone of action.

From the sketch of Fig. 11.3d, we can see that the angle of this cone, is given by

(11.39)

This relationship between Mach number, Ma, and Mach cone angle, , shown by the figure in

the margin, is valid for only. The concentration of pressure waves at the surface of

the Mach cone suggests a significant pressure, and thus density, variation across the cone sur-

face. (See the photograph at the beginning of this chapter.) An abrupt density change can be

visualized in a flow field by using special optics. Examples of flow visualization methods in-

clude the schlieren, shadowgraph, and interferometer techniques 1see Ref. 42. A schlieren photo

of a flow for which is shown in Fig. 11.4. The airflow through the row of compressor

blade airfoils is as shown with the arrow. The flow enters supersonically and1Ma1 � 1.142
V 7 c

V�c 7 1

a

sin a �
c

V
�

1

Ma

a,

V 7 c,

1V�c � 12,

V�c � 1,

V�c 6 1,
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1 1.5 2

Ma

2.5 3

90

60
a

a

30

0

V11.4 Speed boat

F l u i d s  i n  t h e  N e w s

Pistol shrimp confound blast detectors Authorities are on the

trail of fishermen in Southeast Asia and along Africa’s east

coast who illegally blast coral reefs to rubble to increase their

catch. Researchers at Hong Kong University of Science and

Technology have developed a method of using underwater mi-

crophones (hydrophones) to pick up the noise from such blasts.

One complicating factor in the development of such a system is

the noise produced by the claw-clicking pistol shrimp that live

on the reefs. The third right appendage of the 5 cm long pistol

shrimp is adapted into a huge claw with a moveable finger that

can be snapped shut with so much force that the resulting sound
waves kill or stun nearby prey. When near the hydrophones, the

shrimp can generate short-range shock waves that are bigger

than the signal from a distant blast. By recognizing the differ-

ences between the signatures of the sound from an explosion

and that of the pistol shrimp “blast,” the scientists can differen-

tiate between the two and pinpoint the location of the illegal

blasts.

V11.3 Jet noise

When the point source and the fluid are stationary, the pressure wave pattern is symmetrical

1Fig. 11.3a2 and an observer anywhere in the pressure field would hear the same sound frequency

from the point source. When the velocity of the point source 1or the fluid2 is very small in com-

parison with the speed of sound, the pressure wave pattern will still be nearly symmetrical. The

speed of sound in an incompressible fluid is infinitely large. Thus, the stationary point source and

stationary fluid situation are representative of incompressible flows. For truly incompressible flows,

the communication of pressure information throughout the flow field is unrestricted and instanta-

neous 1c � 	2.
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leaves subsonically . The center two airfoils have pressure tap hoses connected to

them. Regions of significant changes in fluid density appear in the supersonic portion of the

flow. Also, the region of separated flow on each airfoil is visible.

This discussion about pressure wave patterns suggests the following categories of fluid flow:

1. Incompressible flow: Unrestricted, nearly symmetrical and instantaneous pressure

communication.

2. Compressible subsonic flow: Unrestricted but noticeably asymmetrical

pressure communication.

3. Compressible supersonic flow: Formation of Mach wave; pressure communica-

tion restricted to zone of action.

In addition to the above-mentioned categories of flows, two other regimes are commonly referred

to: namely, transonic flows and hypersonic flows Modern aircraft

are mainly powered by gas turbine engines that involve transonic flows. When a space shuttle reen-

ters the Earth’s atmosphere, the flow is hypersonic. Future aircraft may be expected to operate from

subsonic to hypersonic flow conditions.

1Ma 7 52.10.9 
 Ma 
 1.22

Ma � 1.0.

0.3 6 Ma 6 1.0.

Ma 
 0.3.

1Ma2 � 0.862
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■ Figure 11.4 The Schlieren visualization of flow
(supersonic to subsonic) through a row of compressor
airfoils. (Photograph provided by Dr. Hans Starken,
Germany.)

V11.5 Compressible
flow visualization

F l u i d s  i n  t h e  N e w s

Supersonic and compressible flows in gas turbines Modern

gas turbine engines commonly involve compressor and turbine

blades that are moving so fast that the fluid flows over the blades

are locally supersonic. Density varies considerably in these

flows so they are also considered to be compressible. Shock
waves can form when these supersonic flows are sufficiently de-

celerated. Shocks formed at blade leading edges or on blade sur-

faces can interact with other blades and shocks and seriously

affect blade aerodynamic and structural performance. It is possi-

ble to have supersonic flows past blades near the outer diameter

of a rotor with subsonic flows near the inner diameter of the same

rotor. These rotors are considered to be transonic in their opera-

tion. Very large aero gas turbines can involve thrust levels ex-

ceeding 445 kN. Two of these engines are sufficient to carry over

350 passengers halfway around the world at high subsonic speed.

(See Problem 11.5LL.)

GIVEN An aircraft cruising at 1000 m elevation, z, above you

moves past in a flyby. It is moving with a Mach number equal to

1.5 and the ambient temperature is .20 °C

FIND How many seconds after the plane passes overhead do

you expect to wait before you hear the aircraft?

Mach ConeEXAMPLE 11.4

SOLUTION

as is illustrated in Fig. E11.4a. A photograph of this phenomenon

is shown in Fig. E11.4b. When the surface of the cone reaches the

Since the aircraft is moving supersonically we can

imagine a Mach cone originating from the forward tip of the craft

1Ma 7 12,
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observer, the “sound” of the aircraft is perceived. The angle in

Fig. E11.4 is related to the elevation of the plane, z, and the ground

distance, x, by

(1)

Also, assuming negligible change of Mach number with elevation,

we can use Eq. 11.39 to relate Mach number to the angle Thus,

(2)

Combining Eqs. 1 and 2 we obtain

(3)

The speed of the aircraft can be related to the Mach number with

(4)

where c is the speed of sound. From Table B.2,

Using we get from Eqs. 3 and 4

1.5 �
1

sin e tan�1 c
1000 m

11.52 1343.3 m�s2t
d f

 

Ma � 1.5,

c � 343.3 m�s.

V � 1Ma2c

Ma �
1

sin 3 tan�1 11000�Vt2 4

Ma �
1

sin a

a.

a � tan�1 
z

x
� tan�1 

1000

Vt

a or

(Ans)

COMMENT By repeating the calculations for various values

of Mach number, Ma, the results shown in Fig. E11.4c are ob-

tained. Note that for subsonic flight (Ma � 1) there is no delay

since the sound travels faster than the aircraft. You can hear a

subsonic aircraft approaching.

t � 2.17 s

■ Figure E11.4a

■ Figure E11.4b NASA Schlieren
photograph of shock waves from a T-38 aircraft
at Mach 1.1, 3962 m. 

z

Mach cone

Aircraft moving with velocity
V and Mach number Ma

α

x = Vt

■ Figure E11.4c

(1.5, 2.17 s)

3

2.5

2

1.5

1

0.5

0
0 0.5 1 1.5 2

Ma
2.5 3 3.5 4

t,
 s

In this section, we consider in further detail the steady, one-dimensional, isentropic flow of an ideal

gas with constant specific heat values 1 and 2. Because the flow is steady throughout, shaft work

cannot be involved. Also, as explained earlier, the one-dimensionality of flows we discuss in this

chapter implies velocity and fluid property changes in the streamwise direction only. We consider

flows through finite control volumes with uniformly distributed velocities and fluid properties at

each section of flow. Much of what we develop can also apply to the flow of a fluid particle along

its pathline.

Isentropic flow involves constant entropy and was discussed earlier in Section 11.1, where

we learned that adiabatic and frictionless 1reversible2 flow is one form of isentropic flow. Some

ideal gas relationships for isentropic flows were developed in Section 11.1. An isentropic flow is

not achievable with actual fluids because of friction. Nonetheless, the study of isentropic flow

trends is useful because it helps us to gain an understanding of actual compressible flow phenomena

cvcp

11.4 Isentropic Flow of an Ideal Gas

An important class
of isentropic flow
involves no heat
transfer and zero
friction.
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including choked flow, shock waves, acceleration from subsonic to supersonic flow, and deceler-

ation from supersonic to subsonic flow.

11.4.1 Effect of Variations in Flow Cross-Sectional Area

When fluid flows steadily through a conduit that has a flow cross-sectional area that varies with

axial distance, the conservation of mass 1continuity2 equation

(11.40)

can be used to relate the flow rates at different sections. For incompressible flow, the fluid density

remains constant and the flow velocity from section to section varies inversely with cross-sectional

area. However, when the flow is compressible, density, cross-sectional area, and flow velocity can

all vary from section to section. We proceed to determine how fluid density and flow velocity

change with axial location in a variable area duct when the fluid is an ideal gas and the flow through

the duct is steady and isentropic.

In Chapter 3, Newton’s second law was applied to the inviscid 1frictionless2 and steady flow

of a fluid particle. For the streamwise direction, the result 1Eq. 3.52 for either compressible or in-

compressible flows is

(11.41)

The frictionless flow from section to section through a finite control volume is also governed by 

Eq. 11.41, if the flow is one-dimensional, because every particle of fluid involved will have the same

experience. For ideal gas flow, the potential energy difference term, can be dropped because of

its small size in comparison to the other terms, namely, dp and Thus, an appropriate equation

of motion in the streamwise direction for the steady, one-dimensional, and isentropic 1adiabatic and

frictionless2 flow of an ideal gas is obtained from Eq. 11.41 as

(11.42)

If we form the logarithm of both sides of the continuity equation 1Eq. 11.402, the result is

(11.43)

Differentiating Eq. 11.43 we get

or

(11.44)

Now we combine Eqs. 11.42 and 11.44 to obtain

(11.45)

Since the flow being considered is isentropic, the speed of sound is related to variations of

pressure with density by Eq. 11.34, repeated here for convenience as

Equation 11.34, combined with the definition of Mach number

(11.46)

and Eq. 11.45 yields

(11.47)
dp

rV 2
 11 � Ma22 �

dA

A

Ma �
V

c

c � Ba
0p

0r
b

s

dp

rV 2
 a1 �

V 2

dp�dr
b �

dA

A

�
dV

V
�

dr

r
�

dA

A

dr

r
�

dA

A
�

dV

V
� 0

ln r � ln A � ln V � constant

dp

rV 2
� �

dV

V

d1V 22.
g dz,

dp � 1
2 r d1V

22 � g dz � 0

m
#

� rAV � constant
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Density, cross-
sectional area, and
velocity may all
vary for a com-
pressible flow.
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Equations 11.42 and 11.47 merge to form

(11.48)

We can use Eq. 11.48 to conclude that when the flow is subsonic velocity and

section area changes are in opposite directions. In other words, the area increase associated with

subsonic flow through a diverging duct like the one shown in Fig. 11.5a is accompanied by a ve-

locity decrease. Subsonic flow through a converging duct 1see Fig. 11.5b2 involves an increase of

velocity. These trends are consistent with incompressible flow behavior, which we described ear-

lier in this book, for instance, in Chapters 3 and 8.

Equation 11.48 also serves to show us that when the flow is supersonic velocity

and area changes are in the same direction. A diverging duct 1Fig. 11.5a2 will accelerate a super-

sonic flow. A converging duct 1Fig. 11.5b2 will decelerate a supersonic flow. These trends are the

opposite of what happens for incompressible and subsonic compressible flows.

To better understand why subsonic and supersonic duct flows are so different, we combine

Eqs. 11.44 and 11.48 to form

(11.49)

Using Eq. 11.49, we can conclude that for subsonic flows density and area changes are

in the same direction, whereas for supersonic flows density and area changes are in op-

posite directions. Since must remain constant 1Eq. 11.402, when the duct diverges and the flow

is subsonic, density and area both increase and thus flow velocity must decrease. However, for su-

personic flow through a diverging duct, when the area increases, the density decreases enough so

that the flow velocity has to increase to keep constant.

By rearranging Eq. 11.48, we can obtain

(11.50)

Equation 11.50 gives us some insight into what happens when For Eq. 11.50

requires that This result suggests that the area associated with is either a min-

imum or a maximum amount.

A converging–diverging duct 1Fig. 11.6a and margin photograph2 involves a minimum area.

If the flow entering such a duct were subsonic, Eq. 11.48 discloses that the fluid velocity would

increase in the converging portion of the duct, and achievement of a sonic condition at

the minimum area location appears possible. If the flow entering the converging–diverging duct

is supersonic, Eq. 11.48 states that the fluid velocity would decrease in the converging portion of

the duct and the sonic condition at the minimum area is possible.

1Ma � 12

Ma � 1dA�dV � 0.

Ma � 1,Ma � 1.

dA

dV
� �

A

V
 11 � Ma22

rAV

rAV
1Ma 7 12,

1Ma 6 12,

dr

r
�

dA

A
 

Ma2

11 � Ma22

1Ma 7 12,

1Ma 6 12,

dV

V
� �

dA

A
 

1

11 � Ma22
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Flow

Flow

Subsonic flow
(Ma < 1)

dA > 0
dV < 0

Supersonic flow
(Ma > 1)

dA > 0
dV > 0

dA < 0
dV > 0

dA < 0
dV < 0

(a)

(b)
■ Figure 11.5 (a) A diverging
duct. (b) A converging duct.

A converging duct
will decelerate a su-
personic flow and
accelerate a sub-
sonic flow.
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A diverging–converging duct 1Fig. 11.6b2, on the other hand, would involve a maximum area.

If the flow entering this duct were subsonic, the fluid velocity would decrease in the diverging por-

tion of the duct and the sonic condition could not be attained at the maximum area location. For

supersonic flow in the diverging portion of the duct, the fluid velocity would increase and thus

at the maximum area is again impossible.

For the steady isentropic flow of an ideal gas, we conclude that the sonic condition 

can be attained in a converging–diverging duct at the minimum area location. This minimum area

location is often called the throat of the converging–diverging duct. Furthermore, to achieve super-

sonic flow from a subsonic state in a duct, a converging–diverging area variation is necessary. For

this reason, we often refer to such a duct as a converging–diverging nozzle. Note that a converging–

diverging duct can also decelerate a supersonic flow to subsonic conditions. Thus, a converging–

diverging duct can be a nozzle or a diffuser depending on whether the flow in the converging portion

of the duct is subsonic or supersonic. A supersonic wind tunnel test section is generally preceded by

a converging–diverging nozzle and followed by a converging–diverging diffuser 1see Ref. 12. Fur-

ther details about steady, isentropic, ideal gas flow through a converging–diverging duct are discussed

in the next section.

11.4.2 Converging–Diverging Duct Flow

In the preceding section, we discussed the variation of density and velocity of the steady isentropic

flow of an ideal gas through a variable area duct. We proceed now to develop equations that help

us determine how other important flow properties vary in these flows.

It is convenient to use the stagnation state of the fluid as a reference state for compressible flow

calculations. The stagnation state is associated with zero flow velocity and an entropy value that cor-

responds to the entropy of the flowing fluid. The subscript 0 is used to designate the stagnation state.

Thus, stagnation temperature and pressure are and For example, if the fluid flowing through

the converging–diverging duct of Fig. 11.6a were drawn isentropically from the atmosphere, the at-

mospheric pressure and temperature would represent the stagnation state of the flowing fluid. The

stagnation state can also be achieved by isentropically decelerating a flow to zero velocity. This can

be accomplished with a diverging duct for subsonic flows or a converging–diverging duct for super-

sonic flows. Also, as discussed earlier in Chapter 3, an approximately isentropic deceleration can be

accomplished with a Pitot-static tube 1see Fig. 3.62. It is thus possible to measure, with only a small

amount of uncertainty, values of stagnation pressure, and stagnation temperature, of a flow-

ing fluid.

In Section 11.1, we demonstrated that for the isentropic flow of an ideal gas 1see Eq. 11.252

The streamwise equation of motion for steady and frictionless flow 1Eq. 11.412 can be expressed

for an ideal gas as

(11.51)

since the potential energy term, , can be considered as being negligibly small in comparison

with the other terms involved.

g dz

dp

r
� d a

V 2

2
b � 0

p

rk
� constant �

p0

rk
0

T0,p0,

p0.T0

1Ma � 12
Ma � 1
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A converging–
diverging duct is re-
quired to accelerate
a flow from sub-
sonic to supersonic
flow conditions.

(a) (b)

FlowFlow

■ Figure 11.6 (a) A converging–diverging duct. (b) A diverging–
converging duct.
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By incorporating Eq. 11.25 into Eq. 11.51 we obtain

(11.52)

Consider the steady, one-dimensional, isentropic flow of an ideal gas with constant and

through the converging–diverging nozzle of Fig. 11.6a. Equation 11.52 is valid for this flow

and can be integrated between the common stagnation state of the flowing fluid to the state of the

gas at any location in the converging–diverging duct to give

(11.53)

By using the ideal gas equation of state 1Eq. 11.12 with Eq. 11.53, we obtain

(11.54)

It is of interest to note that combining Eqs. 11.14 and 11.54 leads to

which, when merged with Eq. 11.9, results in

(11.55)

where is the stagnation enthalpy. If the steady-flow energy equation 1Eq. 5.692 is applied to the

flow situation we are presently considering, the resulting equation will be identical to Eq. 11.55.

Further, we conclude that the stagnation enthalpy is constant. The conservation of momentum and

energy principles lead to the same equation 1Eq. 11.552 for steady isentropic flows.

The definition of Mach number 1Eq. 11.462 and the speed of sound relationship for ideal

gases (Eq. 11.36) can be combined with Eq. 11.54 to yield

(11.56)

which is graphed in the margin for air. With Eq. 11.56 we can calculate the temperature of an

ideal gas anywhere in the converging–diverging duct of Fig. 11.6a if the flow is steady, one-

dimensional, and isentropic, provided we know the value of the local Mach number and the stag-

nation temperature.

We can also develop an equation for pressure variation. Since then

(11.57)

From Eqs. 11.57 and 11.25 we obtain

(11.58)

Combining Eqs. 11.58 and 11.56 leads to

(11.59)

For density variation we consolidate Eqs. 11.56, 11.57, and 11.59 to get

(11.60)

These relationships are graphed in the margin for air.
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For isentropic flows
the temperature,
pressure, and den-
sity ratios are func-
tions of the Mach
number.
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A very useful means of keeping track of the states of an isentropic flow of an ideal gas in-

volves a temperature–entropy (T–s) diagram, as is shown in Fig. 11.7. Experience has shown

1see, for example, Refs. 2 and 32 that lines of constant pressure are generally as are sketched in

Fig. 11.7. An isentropic flow is confined to a vertical line on a T –s diagram. The vertical line in

Fig. 11.7 is representative of flow between the stagnation state and any state within the converging–

diverging nozzle. Equation 11.56 shows that fluid temperature decreases with an increase in Mach

number. Thus, the lower temperature levels on a T –s diagram correspond to higher Mach num-

bers. Equation 11.59 suggests that fluid pressure also decreases with an increase in Mach num-

ber. Thus, lower fluid temperatures and pressures are associated with higher Mach numbers in

our isentropic converging–diverging duct example.

One way to produce flow through a converging–diverging duct like the one in Fig. 11.6a is

to connect the downstream end of the duct to a vacuum pump. When the pressure at the down-

stream end of the duct 1the back pressure2 is decreased slightly, air will flow from the atmosphere

through the duct and vacuum pump. Neglecting friction and heat transfer and considering the air

to act as an ideal gas, Eqs. 11.56, 11.59, and 11.60 and a T –s diagram can be used to describe

steady flow through the converging–diverging duct.

If the pressure in the duct is only slightly less than atmospheric pressure, we predict with

Eq. 11.59 that the Mach number levels in the duct will be low. Thus, with Eq. 11.60 we conclude

that the variation of fluid density in the duct is also small. The continuity equation 1Eq. 11.402 leads

us to state that there is a small amount of fluid flow acceleration in the converging portion of the

duct followed by flow deceleration in the diverging portion of the duct. We considered this type

of flow when we discussed the Venturi meter in Section 3.6.3. The T –s diagram for this flow is

sketched in Fig. 11.8.

We next consider what happens when the back pressure is lowered further. Since the flow

starts from rest upstream of the converging portion of the duct of Fig. 11.6a, Eqs. 11.48 and

11.50 reveal to us that flow up to the nozzle throat can be accelerated to a maximum allowable

Mach number of 1 at the throat. Thus, when the duct back pressure is lowered sufficiently, the

Mach number at the throat of the duct will be 1. Any further decrease of the back pressure will

not affect the flow in the converging portion of the duct because, as is discussed in Section

11.3, information about pressure cannot move upstream when When at the throat

of the converging–diverging duct, we have a condition called choked flow. Some useful equa-

tions for choked flow are developed below.

We have already used the stagnation state for which as a reference condition. It will

prove helpful to us to use the state associated with and the same entropy level as the flow-

ing fluid as another reference condition we shall call the critical state, denoted 

The ratio of pressure at the converging–diverging duct throat for choked flow, to stagna-

tion pressure, is referred to as the critical pressure ratio. By substituting into Eq. 11.59

we obtain

(11.61)
p*

p0

� a
2

k � 1
b

k�1k�12

Ma � 1p0,

p*,

1 2*.

Ma � 1

Ma � 0

Ma � 1Ma � 1.
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■ Figure 11.7 The (T – s) diagram relating
stagnation and static states.

T

s

T

p

p0

T0

■ Figure 11.8 The T – s diagram for Venturi
meter flow.

T

s

(1) (2)

T2

T1

T0

p0
p1
p2

Choked flow occurs
when the Mach
number is 1.0 at
the minimum cross-
sectional area.
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For the nominal value of k for air, Eq. 11.61 yields

(11.62)

Because the stagnation pressure for our converging–diverging duct example is the atmospheric pres-

sure, the throat pressure for choked air flow is, from Eq. 11.62

We can get a relationship for the critical temperature ratio, by substituting 

into Eq. 11.56. Thus,

(11.63)

or for 

(11.64)

For the duct of Fig. 11.6a, Eq. 11.64 yields

The stagnation and critical pressures and temperatures are shown on the T –s diagram of

Fig. 11.9.

When we combine the ideal gas equation of state 1Eq. 11.12 with Eqs. 11.61 and 11.63, for

we get

(11.65)

For air Eq. 11.65 leads to

(11.66)

and we see that when the converging–diverging duct flow is choked, the density of the air at the

duct throat is 63.4% of the density of atmospheric air.

a
r*

r0

b
k�1.4

� 0.634

1k � 1.42,

r*

r0

� a
p*

T*
b a

T0

p0

b � a
2

k � 1
b

k�1k�12

a
k � 1

2
b � a

2

k � 1
b

1�1k�12

Ma � 1

T*
k�1.4

� 0.833Tatm

a
T*

T0

b
k�1.4

� 0.833

k � 1.4

T*

T0

�
2

k � 1

Ma � 1T*�T0,

p*
k�1.4 � 0.528patm

patm,

a
p*

p0

b
k�1.4

� 0.528

k � 1.4,
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The stagnation and
critical states are at
the same entropy
level.

GIVEN A converging duct passes air steadily from standard

atmospheric conditions to a receiver pipe as illustrated in Fig.

E11.5a. The throat 1minimum2 flow cross-sectional area of the con-

verging duct is . The receiver pressure is 1a2 80 kPa

1abs2, 1b2 40 kPa 1abs2. 
1 � 10�4 m2

FIND Determine the mass flowrate through the duct and

sketch temperature–entropy diagrams for situations 1a2 and 1b2.

Isentropic Flow in a Converging DuctEXAMPLE 11.5

■ Figure 11.9 The relationship between the
stagnation and critical states.

T

T* =

T0

p0

T0

s

( )2______
k + 1

p* = p0( )2______
k + 1

( )k______
k – 1
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11.4 Isentropic Flow of an Ideal Gas 619

SOLUTION

From Eq. 5

or

Substituting into Eq. 4 we obtain

Thus, since 

we obtain

Vth � 193 m�s

1m�s22,
1 J�kg � 1 N # m�kg � 1 1kg # m�s22 # m�kg �

 � 193 1J�kg21�2
Vth � 0.587 2 3286.9 J� 1kg # K2 4 1269 K2 11.42

Math � 0.587 and Tth � 269 K

Tth � 269 K

Tth

288 K
�

1

1 � 3 11.4 � 12�2 4 10.58722

To determine the mass flowrate through the converging duct, we

use Eq. 11.40. Thus,

or in terms of the given throat area,

(1)

We assume that the flow through the converging duct is isen-

tropic and that the air behaves as an ideal gas with constant and

Then, from Eq. 11.60

(2)

The stagnation density, for the standard atmosphere is

and the specific heat ratio is 1.4. To determine the

throat Mach number, we can use Eq. 11.59,

(3)

The critical pressure, is obtained from Eq. 11.62 as

If the receiver pressure, is greater than or equal to then

If then and the flow is choked. With

and k known, can be obtained from Eq. 3, and can

be determined from Eq. 2.

The flow velocity at the throat can be obtained from Eqs.

11.36 and 11.46 as

(4)

The value of temperature at the throat, can be calculated from

Eq. 11.56,

(5)

Since the flow through the converging duct is assumed to be isen-

tropic, the stagnation temperature is considered constant at the

standard atmosphere value of 

Note that absolute pressures and temperatures are used.

(a) For we have

kPa1abs2. Then from Eq. 3

or

From Eq. 2

or

rth � 1.04 kg�m3

rth

1.23 kg�m3
� e

1

1 � 3 11.4 � 12�2 4 10.58722
f

1�11.4�12

 Math � 0.587

80 kPa1abs2

101 kPa1abs2
� e

1

1 � 3 11.4 � 12�2 4Ma2
th

f
1.4� 11.4�12

pth � 80

pre � 80 kPa1abs2 7 53.3 kPa1abs2 � p*,

288 K.T0 � 15 K � 273 K �

Tth

T0

�
1

1 � 3 1k � 12�2 4Ma2
th

Tth,

Vth � Math cth � Math2RTthk

rthMathpth, p0,

pth � p*pre 6 p*,pth � pre.

p*,pre,

 � 10.5282 3101 kPa1abs2 4 � 53.3 kPa1abs2

p* � 0.528p0 � 0.528patm

p*,

pth

p0

� e
1

1 � 3 1k � 12�2 4Ma2
th

f
k�1k�12

Math,

1.23 kg�m3,

r0,

rth

r0

� e
1

1 � 3 1k � 12�2 4Ma2
th

f
1�1k�12

cv.

cp

m
#

� rthAthVth

Ath,

m
#

� rAV � constant

■ Figure E11.5

Tre < T*

pre < p*

300

290

280

270

260

250

240

230

220

T
, 

K

J_______
(kg • K)

s,

(c)

T* = 240 K

p* = 53.3 kPa (abs)

p0 = 101 kPa (abs)

T0 = 288 K

300

290

280

270

260

250

240

230

220

Situation (b)

Situation (a)

Tth, b = 240 K

Tth, a = 269 K

T0 = 288 K

pth, b = 53.3 kPa (abs) = p*

pth, a = 80 kPa (abs)

p0 = 101 kPa (abs)

T
, 
K

J_______
(kg • K)

s,

(b)

Flow

Standard
atmosphere

Converging duct Receiver pipe

(a)
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Isentropic flow Eqs. 11.56, 11.59, and 11.60 have been used to construct Fig. D.1 in Appen-

dix D for air Examples 11.6 and 11.7 illustrate how these graphs of and 

as a function of Mach number, Ma, can be used to solve compressible flow problems.

r�r0p�p0,T�T0,1k � 1.42.

620 Chapter 11 ■ Compressible Flow

Finally from Eq. 1 we have

(Ans)

(b) For we have

and The converging duct is

choked. From Eq. 2 1see also Eq. 11.662

or

From Eq. 5 1see also Eq. 11.642,

or

Tth � 240 K

Tth

288 K
�

1

1 � 3 11.4 � 12�2 4 1122

rth � 0.780 kg�m3

rth

1.23 kg�m3
� e

1

1 � 3 11.4 � 12�2 4 1122
f

1� 11.4�12

Math � 1.pth � p* � 53.3 kPa1abs2
pre � 40 kPa1abs2 � 53.3 kPa1abs2 � p*,

 � 0.0201 kg�s
m
#

� 11.04 kg�m32 11 � 10�4 m22 1193 m�s2

From Eq. 4,

since Finally

from Eq. 1

(Ans)

From the values of throat temperature and throat pressure cal-

culated above for flow situations 1a2 and 1b2, we can construct the

temperature–entropy diagram shown in Fig. E11.5b.

COMMENT Note that the flow from standard atmosphere to

the receiver for receiver pressure, greater than or equal to the

critical pressure, is isentropic. When the receiver pressure is

less than the critical pressure as in situation 1b2 above, what is the

flow like downstream from the exit of the converging duct? Expe-

rience suggests that this flow, when is three-

dimensional and nonisentropic and involves a drop in pressure

from to a drop in temperature, and an increase of entropy

as are indicated in Fig. E11.5c.

pre,pth

pre 6 p*,

p*,

pre,

 � 0.0242 kg�s
m
#

� 10.780 kg�m32 11 � 10�4 m22 1310 m�s2

1 J�kg �1 N # m�kg �1 1kg # m�s22 # m�kg � 1m�s22.

 � 310 1J�kg21�2 � 310 m�s
Vth � 112 2 3286.9 J� 1kg # K2 4 1240 K2 11.42

GIVEN Consider the flow described in Example 11.5.

Use of Compressible Flow Graphs in Solving ProblemsEXAMPLE 11.6

SOLUTION

Thus, from Eqs. 2 and 3

and

Furthermore, using Eqs. 11.36 and 11.46 we get

since 

Finally, from Eq. 1

(Ans) � 0.0202 kg�s
m
#

� 11.04 kg�m32 11 � 10�4 m22 1194 m�s2

1 J�kg � 1 N # m�kg � 1 1kg # m�s22 # m�kg � 1m�s22.

 � 194 1J�kg21�2 � 194 m�s

 � 10.592 2 3286.9 J� 1kg # K2 4 1269 K2 11.42

 Vth � Math 2RTthk

rth � 10.852 11.23 kg�m32 � 1.04 kg�m3

Tth � 10.942 1288 K2 � 271 K

We still need the density and velocity of the air at the converging

duct throat to solve for mass flowrate from

(1)

(a) Since the receiver pressure, is greater

than the critical pressure, the throat pres-

sure, is equal to the receiver pressure. Thus

From Fig. D.1, for we get from the graph

(2)

(3) 
rth

r0

� 0.85

 
Tth

T0

� 0.94

 Math � 0.59

p�p0 � 0.79,

pth

p0

�
80 kPa1abs2

101 kPa1abs2
� 0.792

pth,

p* � 53.3 kPa1abs2,
pre � 80 kPa1abs2,

m
#

� rthAthVth

FIND Solve Example 11.5 using Fig. D.1 of Appendix D.
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11.4 Isentropic Flow of an Ideal Gas 621

(b) For the throat

pressure is equal to 53.3 kPa1abs2 and the duct is choked with

From Fig. D.1, for we get

(4)

and

(5)

From Eqs. 4 and 5 we obtain

and

 rth � 10.642 11.23 kg�m32 � 0.79 kg�m3

 Tth � 10.832 1288 K2 � 240 K

rth

r0

� 0.64

Tth

T0

� 0.83

Ma � 1Math � 1.

pre � 40 kPa1abs2 6 53.3 kPa1abs2 � p*, Also, from Eqs. 11.36 and 11.46 we conclude that

Then, from Eq. 1

(Ans)

COMMENT The values from Fig. D.1 resulted in answers

for mass flowrate that are close 1within the accuracy of reading

data from the figures2 to those using the ideal gas equations 1see

Example 11.52.
The temperature–entropy diagrams remain the same as those

provided in the solution of Example 11.5.

 � 0.024 kg�s
m
#

� 10.79 kg�m32 11 � 10�4 m22 1310 m�s2

 � 310 1J�kg21�2 � 310 m�s
 � 112 2 3286.9 J� 1kg # K2 4 1240 K2 11.42

 Vth � Math 2RTthk

GIVEN The static pressure to stagnation pressure ratio at a point

in a flow stream is measured with a Pitot-static tube 1see Fig. 3.62 as

being equal to 0.82. The stagnation temperature of the fluid is 20 °C.

Static to Stagnation Pressure RatioEXAMPLE 11.7

SOLUTION

and using Eqs. 1, 2, and 4 we get

(Ans)

(b) For helium, and By substituting

these values into Eq. 11.59 we get

or

From Eq. 11.56 we obtain

Thus,

From Eq. 1 we obtain

 � 180 m�s
V � 10.4992 2 3286.9 J�kg # K 4 1272 K2 11.662

 � 272 K

T � e
1

1 � 3 11.66 � 12�2 4 10.49922
f 3 120 � 2742 K 4

T

T0

�
1

1 � 3 1k � 12�2 4Ma2

Ma � 0.499

0.82 � e
1

1 � 3 11.66 � 12�2 4  Ma2
f

1.66�11.66�12

k � 1.66.p�p0 � 0.82

� 186 m�s

V � 10.542 21286.9 J�kg # K2 1294 K2 11.42

We consider both air and helium, flowing as described above, to

act as ideal gases with constant specific heats. Then, we can use

any of the ideal gas relationships developed in this chapter. To de-

termine the flow velocity, we can combine Eqs. 11.36 and 11.46

to obtain

(1)

By knowing the value of static to stagnation pressure ratio, and

the specific heat ratio we can obtain the corresponding Mach num-

ber from Eq. 11.59, or for air, from Fig. D.1. Figure D.1 

cannot be used for helium, since k for helium is 1.66 and Fig. D.1 is

for only. With Mach number, specific heat ratio, and stag-

nation temperature known, the value of static temperature can be

subsequently ascertained from Eq. 11.56 1or Fig. D.1 for air2.

(a) For air, thus from Fig. D.1,

(2)

and

(3)

Then, from Eq. 3

(4)T � 10.942 320 K � 274 K 4 � 294 K

T

T0

� 0.94

Ma � 0.54

p�p0 � 0.82;

k � 1.4

p�p0,

V � Ma 2RTk

FIND Determine the flow velocity if the fluid is 1a2 air, 1b2
helium.
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Also included in Fig. D.1 is a graph of the ratio of local area, A, to critical area, for dif-

ferent values of local Mach number. The importance of this area ratio is clarified below.

For choked flow through the converging–diverging duct of Fig. 11.6a, the conservation of

mass equation 1Eq. 11.402 yields

or

(11.67)

From Eqs. 11.36 and 11.46, we obtain

(11.68)

and

(11.69)

By combining Eqs. 11.67, 11.68, and 11.69 we get

(11.70)

The incorporation of Eqs. 11.56, 11.60, 11.63, 11.65, and 11.70 results in

(11.71)

Equation 11.71 was used to generate the values of for air in Fig. D.1. These val-

ues of are graphed as a function of Mach number in Fig. 11.10. As is demonstrated in the

following examples, whether or not the critical area, is physically present in the flow, the area

ratio, is still a useful concept for the isentropic flow of an ideal gas through a converging–

diverging duct.

A�A*,

A*,

A�A*

1k � 1.42A�A*

A

A*
�

1

Ma
 e

1 � 3 1k � 12�2 4Ma2

1 � 3 1k � 12�2 4
f
1k�12� 321k�124

A

A*
�

1

Ma
 a
r*

r0

b a
r0

r
b B
1T*�T02

1T�T02

V � Ma 1RTk

V* � 1RT*k

A

A*
� a
r*

r
b a

V*

V
b

rAV � r*A*V*

A*,
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COMMENT Note that the isentropic flow equations and Fig.

D.1 for were used presently to describe fluid particle

isentropic flow along a pathline in a stagnation process. Even

though these equations and graph were developed for one-

dimensional duct flows, they can be used for frictionless, adia-

batic pathline flows also.

k � 1.4

Furthermore, while the Mach numbers calculated above are of

similar size for the air and helium flows, the flow speed is much

larger for helium than for air because the speed of sound in he-

lium is much larger than it is in air.

■ Figure 11.10 The variation of area ratio with
Mach number for isentropic flow of an ideal gas
( linear coordinate scales).k � 1.4,

2.0

1.0

A___
A*

0 1.0
Ma

The ratio of flow
area to the critical
area is a useful
concept for isen-
tropic duct flow.
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11.4 Isentropic Flow of an Ideal Gas 623

GIVEN Air enters subsonically from standard atmosphere and

flows isentropically through a choked converging–diverging duct

having a circular cross-sectional area, A, that varies with axial dis-

tance from the throat, x, according to the formula

where A is in square meters and x is in meters. The duct extends

from to x � �0.5 m.x � �0.5 m

A � 0.1 � x2

Isentropic Choked Flow in a Converging–Diverging
Duct with Subsonic Entry

EXAMPLE 11.8

SOLUTION

and a graph of radius as a function of axial distance can be easily

constructed (see Fig. E11.8a).

Since the converging – diverging duct in this example is

choked, the throat area is also the critical area, From Eq. 2 we

see that

(4)

For any axial location, from Eqs. 2 and 4 we get

(5)
A

A*
�

0.1 � x2

0.1

A* � 0.1 m2

A*.

The side view of the converging–diverging duct is a graph of ra-

dius r from the duct axis as a function of axial distance. For a cir-

cular flow cross section we have

(1)

where

(2)

Thus, combining Eqs. 1 and 2, we have

(3)r � a
0.1 � x2

p
b

1�2

A � 0.1 � x2

A � pr2

FIND For this flow situation, sketch the side view of the duct and

graph the variation of Mach number, static temperature to stagnation

temperature ratio, and static pressure to stagnation pressure

ratio, through the duct from to 

Also show the possible fluid states at and

using temperature–entropy coordinates.�0.5 m

x � �0.5 m, 0 m,

x � �0.5 m.x � �0.5 mp�p0,

T�T0,

0.4

0.3

0.2

0.1

0
–0.5 –0.4 –0.2 0

(a)

x, m
0.2 0.4 0.5

r,
 m

3.0

2.0

1.0

–0.5 –0.4 –0.2 0
x, m

Ma

0.2 0.4 0.5

Subsonic Subsonic

Supersonic

(b)

(c) (d)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
–0.5 –0.4 –0.2 0 0.2 0.4 0.5

x, m

T___
T0

T/T0

p/p0

p___
p0

Subsonic

Subsonic

Subsonic

Subsonic

Supersonic

Supersonic

310

290

270

250

230

210

190

170

150

130

110

90

0

d

b

a, c

pd = 4 kPa (abs)

pb = 54 kPa (abs)

pa = pc = 99 kPa (abs)p0 = 101 kPa (abs)

Td = 112 K

Tb = 39 K

Ta = Tc = 285 K

T0 = 288 K

T
, 

K

J_______
(kg • K)

s,

■ Figure E11.8
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Values of from Eq. 5 can be used in Eq. 11.71 to calculate

corresponding values of Mach number, Ma. For air with 

we could enter Fig. D.1 with values of and read off values of

the Mach number. With values of Mach number ascertained, we

could use Eqs. 11.56 and 11.59 to calculate related values of 

and For air with Fig. D.1 could be entered with

or Ma to get values of and To solve this example,

we elect to use values from Fig. D.1.

The following table was constructed by using Eqs. 3 and 5 and

Fig. D.1.

With the air entering the choked converging–diverging duct

subsonically, only one isentropic solution exists for the converg-

ing portion of the duct. This solution involves an accelerating

flow that becomes sonic at the throat of the passage.

Two isentropic flow solutions are possible for the diverging

portion of the duct—one subsonic, the other supersonic. If the

pressure ratio, is set at 0.98 at 1the outlet2, the

subsonic flow will occur. Alternatively, if is set at 0.04 at

the supersonic flow field will exist. These condi-

tions are illustrated in Fig. E11.8. An unchoked subsonic flow

through the converging–diverging duct of this example is dis-

cussed in Example 11.10. Choked flows involving flows other

than the two isentropic flows in the diverging portion of the duct

of this example are discussed after Example 11.10.

COMMENT Note that if the diverging portion of this duct

is extended, larger values of and Ma are achieved. From

Fig. D1, note that further increases of result in smaller

changes of Ma after values of about 10. The ratio of p�p0A�A*

A�A*

A�A*

x � �0.5 m,

p�p0

x � �0.5 mp�p0,

1Ma � 12

p�p0.T�T0A�A*

k � 1.4,p�p0.

T�T0

A�A*

k � 1.4,

A�A*

From From
Eq. 3, Eq. 5,

From Fig. D.1

x (m) r (m) Ma State

Subsonic Solution

0.334 3.5 0.17 0.99 0.98 a
0.288 2.6 0.23 0.99 0.97

0.246 1.9 0.32 0.98 0.93

0.211 1.4 0.47 0.96 0.86

0.187 1.1 0.69 0.91 0.73

0 0.178 1 1.00 0.83 0.53 b
0.187 1.1 0.69 0.91 0.73

0.211 1.4 0.47 0.96 0.86

0.246 1.9 0.32 0.98 0.93

0.288 2.6 0.23 0.99 0.97

0.344 3.5 0.17 0.99 0.98 c

Supersonic Solution

0.187 1.1 1.37 0.73 0.33

0.211 1.4 1.76 0.62 0.18

0.246 1.9 2.14 0.52 0.10

0.288 2.6 2.48 0.45 0.06

0.334 3.5 2.80 0.39 0.04 d�0.5

�0.4

�0.3

�0.2

�0.1

�0.5

�0.4

�0.3

�0.2

�0.1

�0.1

�0.2

�0.3

�0.4

�0.5

p�p0T�T0A�A*

becomes vanishingly small, suggesting a practical limit to the

expansion.

GIVEN Air enters supersonically with and equal to stan-

dard atmosphere values and flows isentropically through the

choked converging–diverging duct described in Example 11.8.

FIND Graph the variation of Mach number, Ma, static temper-

ature to stagnation temperature ratio, and static pressure toT�T0,

p0T0

Isentropic Choked Flow in a Converging–Diverging
Duct with Supersonic Entry

EXAMPLE 11.9

SOLUTION

With the air entering the converging–diverging duct of Example

11.8 supersonically instead of subsonically, a unique isentropic

flow solution is obtained for the converging portion of the duct.

Now, however, the flow decelerates to the sonic condition at the

throat. The two solutions obtained previously in Example 11.8 for

the diverging portion are still valid. Since the area variation in the

duct is symmetrical with respect to the duct throat, we can use the

supersonic flow values obtained from Example 11.8 for the super-

sonic flow in the converging portion of the duct. The supersonic

flow solution for the converging passage is summarized in the fol-

lowing table. The solution values for the entire duct are graphed

in Fig. E11.9.

stagnation pressure ratio, through the duct from

to Also show the possible fluid states

at and by using temperature –

entropy coordinates.

�0.5 mx � �0.5 m, 0 m,

x � �0.5 m.x � �0.5 m

p�p0,

From Fig. D.1

x (m) Ma State

3.5 2.8 0.39 0.04 e
2.6 2.5 0.45 0.06

1.9 2.1 0.52 0.10

1.4 1.8 0.62 0.18

1.1 1.4 0.73 0.33

0 1 1.0 0.83 0.53 b
�0.1

�0.2

�0.3

�0.4

�0.5

p�p0T�T0A�A*
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0.4

0.3

0.2

0.1

0
–0.5 –0.4 –0.2 0

(a) (b)

x, m x, m
0.2 0.4 0.5

3.0

2.0

1.0

0
–0.5 –0.4 –0.2 0 0.2 0.4 0.5

(c)

x, m
–0.5 –0.4 –0.2 0 0.2 0.4 0.5

Ma

Supersonic

Supersonic

Subsonic

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

T___
T0

p___
p0

Subsonic

Subsonic

SupersonicSupersonic

Supersonic Supersonic

T/T0

p/p0

(d)

310

290

270

250

230

210

190

170

150

130

110

90

0

d

b

c

pe = pd = 4 kPa (abs)

pb = 54 kPa (abs)

pc = 99 kPa (abs)p0 = 101 kPa (abs)

Te = Td = 112 K

Tb = 240 K

Tc = 286 K
T0 = 288 K

T
, 
K

r, m

J_______
(kg • K)

s,

■ Figure E11.9

GIVEN Air flows subsonically and isentropically through the

converging–diverging duct of Example 11.8.

FIND Graph the variation of Mach number, Ma, static temper-

ature to stagnation temperature ratio, and the static pressureT�T0,

Isentropic Unchoked Flow in a Converging–
Diverging Duct

EXAMPLE 11.10

SOLUTION

for this example is

(1)

With known values of duct area at different axial locations,

we can calculate corresponding area ratios, knowing

Having values of the area ratio, we can use

Fig. D.1 and obtain related values of Ma, and The fol-

lowing table summarizes flow quantities obtained in this manner.

The results are graphed in Fig. E11.10.

p�p0.T�T0,

A* � 0.07 m2.

A�A*,

A* �
A

1A�A*2
�

0.10 m2

1.4
� 0.07 m2

A*Since for this example, at the isentropic

flow through the converging–diverging duct will be entirely

subsonic and not choked. For air flowing isentrop-

ically through the duct, we can use Fig. D.1 for flow field

quantities. Entering Fig. D.1 with we read off

and Even though the

duct flow is not choked in this example and does not there-

fore exist physically, it still represents a valid reference. For a

given isentropic flow, and are constants. Since A
at is equal to 1from Eq. 2 of Example 11.82,0.10 m2x � 0 m

A*p0, T0,

A*

A�A* � 1.4.T�T0 � 0.96,p�p0 � 0.85,

Ma � 0.48

1k � 1.42

x � 0 m,Ma � 0.48

to stagnation pressure ratio, through the duct from

to for at Show the

corresponding temperature–entropy diagram.

x � 0 m.Ma � 0.48x � �0.5 mx � �0.5 m

p�p0,
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A more precise solution for the flow of this example could

have been obtained with isentropic flow equations by following

the steps outlined below.

1. Use Eq. 11.59 to get at knowing k and

2. From Eq. 11.71, obtain value of at knowing

k and Ma.

3. Determine knowing A and at 

4. Determine at different axial locations, x.

5. Use Eq. 11.71 and from step 4 above to get values

of Mach numbers at different axial locations.

6. Use Eqs. 11.56 and 11.59 and Ma from step 5 above to

obtain and at different axial locations, x.

COMMENT There are an infinite number of subsonic, isen-

tropic flow solutions for the converging–diverging duct consid-

ered in this example 1one for any given Ma � 1 at x � 02.

p�p0T�T0

A�A*

A�A*

x � 0.A�A*A*

x � 0A�A*

Ma � 0.48.

x � 0p�p0

■ Figure E11.10

0.4

0.3

0.2

0.1

0
–0.5 –0.4 –0.2 0

(a) (b)

x, m x, m
0.2 0.4 0.5

1.0

0
–0.5 –0.4 –0.2 0 0.2 0.4 0.5

(c)

x, m
–0.5 –0.4 –0.2 0 0.2 0.4 0.5

Ma SubsonicSubsonic

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

T___
T0

p___
p0

Subsonic T/T0 Subsonic p/p0

(d)

296

292

288

284

280

276

272

268

264

260

0

b

a, c

pa = pc = 100 kPa (abs)

p0 = 101 kPa (abs)

T
, 
K

r, m

J_______
(kg • K)

s,

pb = 86 kPa (abs)

Tb = 276 K

T0 = 288 K
Ta = Tc = 285 K

Calculated,
From Fig. D.1

x (m) Ma State

5.0 0.12 0.99 0.99 a
3.7 0.16 0.99 0.98

2.7 0.23 0.99 0.96

2.0 0.31 0.98 0.94

1.6 0.40 0.97 0.89

0 1.4 0.48 0.96 0.85 b
1.6 0.40 0.97 0.89

2.0 0.31 0.98 0.94

2.7 0.23 0.99 0.96

3.7 0.16 0.99 0.98

5.0 0.12 0.99 0.99 c�0.5

�0.4

�0.3

�0.2

�0.1

�0.1

�0.2

�0.3

�0.4

�0.5

p�p0T�T0A�A*

F l u i d s  i n  t h e  N e w s

Liquid knife A supersonic stream of liquid nitrogen is capable of

cutting through engineering materials like steel and concrete. Origi-

nally developed at the Idaho National Engineering Laboratory for

cutting open barrels of waste products, this technology is now more

widely available. The fast-moving nitrogen enters the cracks and

crevices of the material being cut, then expands rapidly and breaks

up the solid material it has penetrated. After doing its work, the

nitrogen gas simply becomes part of the atmosphere, which is

mostly nitrogen already. This technology is also useful for stripping

coatings even from delicate surfaces.
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The isentropic flow behavior for the converging–diverging duct discussed in Examples 11.8,

11.9, and 11.10 is summarized in the area ratio–Mach number graphs sketched in Fig. 11.11. The

points a, b, and c represent states at axial distance 0 m, and In Fig. 11.11a,

the isentropic flow through the converging–diverging duct is subsonic without choking at the

throat. This situation was discussed in Example 11.10. Figure 11.11b represents subsonic to sub-

sonic choked flow 1Example 11.82, and Fig. 11.11c is for subsonic to supersonic choked flow 1also

Example 11.82. The states in Fig. 11.11d are related to the supersonic to supersonic choked flow

of Example 11.9; the states in Fig. 11.11e are for the supersonic to subsonic choked flow of 

Example 11.9. Not covered by an example but also possible are the isentropic flow states a, b,

and c shown in Fig. 11.11f for supersonic to supersonic flow without choking. These six cate-

gories generally represent the possible kinds of isentropic, ideal gas flow through a converging–

diverging duct.

For a given stagnation state 1i.e., and fixed2, ideal gas and converging–

diverging duct geometry, an infinite number of isentropic subsonic to subsonic 1not choked2 and

supersonic to supersonic 1not choked2 flow solutions exist. In contrast, the isentropic subsonic

to supersonic 1choked2, subsonic to subsonic 1choked2, supersonic to subsonic 1choked2, and su-

personic to supersonic 1choked2 flow solutions are each unique. The above-mentioned isentropic

1k � constant2,p0T0

�0.5 m.x � �0.5 m,

11.4 Isentropic Flow of an Ideal Gas 627

A___
A*

1.0

0 1.0
Ma

(a) (b)

a, c

b
A___
A*

1.0

0 1.0
Ma

a, c

b

A___
A*

1.0

0 1.0
Ma

(c) (d)

ca

b

A___
A*

1.0

0 1.0
Ma

a, c

b

A___
A*

1.0

0 1.0
Ma

(e) ( f )

a
c

b

A___
A*

1.0

0 1.0
Ma

a, c

b

■ Figure 11.11 (a) Subsonic to subsonic isentropic flow (not choked). (b) Subsonic to subsonic isen-
tropic flow (choked). (c) Subsonic to supersonic isentropic flow (choked). (d) Supersonic to supersonic
isentropic flow (choked). (e) Supersonic to subsonic isentropic flow (choked). ( f ) Supersonic to supersonic
isentropic flow (not choked).

A variety of flow
situations can oc-
cur for flow in a
converging–
diverging duct.

V11.6 Rocket 
engine start-up

c11CompressibleFlow.qxd  9/26/12  10:27 PM  Page 627



flow solutions are represented in Fig. 11.12. When the pressure at 1exit2 is greater

than or equal to indicated in Fig. 11.12d, an isentropic flow is possible. When the pressure

at is equal to or less than isentropic flows in the duct are possible. However, when

the exit pressure is less than and greater than as indicated in Fig. 11.13, isentropic flows

are no longer possible in the duct. Determination of the value of is discussed in Example

11.19.

Some possible nonisentropic choked flows through our converging–diverging duct are

represented in Fig. 11.13. Each abrupt pressure rise shown within and at the exit of the 

flow passage occurs across a very thin discontinuity in the flow called a normal shock wave.

Except for flow across the normal shock wave, the flow is isentropic. The nonisentropic flow

equations that describe the changes in fluid properties that take place across a normal shock

wave are developed in Section 11.5.3. The less abrupt pressure rise or drop that occurs after

the flow leaves the duct is nonisentropic and attributable to three-dimensional oblique shock
waves or expansion waves 1see margin photograph2. If the pressure rises downstream of the

duct exit, the flow is considered overexpanded. If the pressure drops downstream of the duct

exit, the flow is called underexpanded. Further details about over- and underexpanded flows

and oblique shock waves are beyond the scope of this text. Interested readers are referred to

pIII

pIIIpI

pII,x � �0.5

pI

x � �0.5

628 Chapter 11 ■ Compressible Flow

–0.5 0

(a)

x, m
+0.5

r

–0.5 0

(c)

x, m
+0.5

T

–0.5

1.0

0

(b)

x, m
+0.5

Ma

–0.5 0

(d)

x, m
+0.5

p

pII

pI

■ Figure 11.12 (a) The variation of duct radius with axial distance. (b) The variation of Mach
number with axial distance. (c) The variation of temperature with axial distance. (d ) The variation of
pressure with axial distance.

p

x

pI

pIII

pII

■ Figure 11.13 Shock formation in converging –
diverging duct flows.

Shock waves

V11.7 Supersonic
nozzle flow

Photographs courtesy of
NASA.
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11.5 Nonisentropic Flow of an Ideal Gas 629

Constant area duct

Fluid flow

■ Figure 11.14 Constant area duct flow.

11.4.3 Constant Area Duct Flow

For steady, one-dimensional, isentropic flow of an ideal gas through a constant area duct 1see

Fig. 11.142, Eq. 11.50 suggests that or that flow velocity remains constant. With the en-

ergy equation 1Eq. 5.692 we can conclude that since flow velocity is constant, the fluid enthalpy

and thus temperature are also constant for this flow. This information and Eqs. 11.36 and 11.46

indicate that the Mach number is constant for this flow also. This being the case, Eqs. 11.59

and 11.60 tell us that fluid pressure and density also remain unchanged. Thus, we see that a

steady, one-dimensional, isentropic flow of an ideal gas does not involve varying velocity or

fluid properties unless the flow cross-sectional area changes.

In Section 11.5 we discuss nonisentropic, steady, one-dimensional flows of an ideal gas

through a constant area duct and also a normal shock wave. We learn that friction and�or heat trans-

fer can also accelerate or decelerate a fluid.

dV � 0

F l u i d s  i n  t h e  N e w s

Rocket nozzles To develop the massive thrust needed for Space

Shuttle liftoff, the gas leaving the rocket nozzles must be moving

supersonically. For this to happen, the nozzle flow path must first

converge, then diverge. Entering the nozzle at very high pressure

and temperature, the gas accelerates in the converging portion of

the nozzle until the flow chokes at the nozzle throat. Downstream

of the throat, the gas further accelerates in the diverging portion of

the nozzle (area ratio of 77.5 to 1), finally exiting into the atmos-

phere supersonically. At launch, the static pressure of the gas

flowing from the nozzle exit is less than atmospheric and so the

flow is overexpanded. At higher elevations where the atmospheric

pressure is much less than at launch level, the static pressure of

the gas flowing from the nozzle exit is greater than atmospheric

and so now the flow is underexpanded. The result is expansion or

divergence of the exhaust gas as it exits into the atmosphere. (See

Problem 11.46.)

11.5 Nonisentropic Flow of an Ideal Gas

Actual fluid flows are generally nonisentropic. An important example of nonisentropic flow involves

adiabatic 1no heat transfer2 flow with friction. Flows with heat transfer 1diabatic flows2 are generally

nonisentropic also. In this section we consider the adiabatic flow of an ideal gas through a constant

area duct with friction. This kind of flow is often referred to as Fanno flow. We also analyze the

diabatic flow of an ideal gas through a constant area duct without friction 1Rayleigh flow2. The con-

cepts associated with Fanno and Rayleigh flows lead to further discussion of normal shock waves.

11.5.1 Adiabatic Constant Area Duct Flow 
with Friction (Fanno Flow)

Consider the steady, one-dimensional, and adiabatic flow of an ideal gas through the constant area

duct shown in Fig. 11.15. This is Fanno flow. For the control volume indicated, the energy equa-

tion 1Eq. 5.692 leads to

0 1negligibly 0 1flow is adiabatic2
small for 01flow is steady

gas flow2 throughout2

m
#
c ȟ2 � ȟ1 �

V 2
2 � V 2

1

2
� g1z2 � z12 d � Q

#
net
in.

� W
#

shaft
net in

Fanno flow involves
wall friction with
no heat transfer
and constant cross-
sectional area.

texts on compressible flows and gas dynamics 1for example, Refs. 4, 5, and 62 for additional

material on this subject.
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or

(11.72)

where is the stagnation enthalpy. For an ideal gas we gather from Eq. 11.9 that

(11.73)

so that by combining Eqs. 11.72 and 11.73 we get

or

(11.74)

By substituting the ideal gas equation of state 1Eq. 11.12 into Eq. 11.74, we obtain

(11.75)

From the continuity equation 1Eq. 11.402 we can conclude that the density–velocity product,

is constant for a given Fanno flow since the area, A, is constant. Also, for a particular Fanno

flow, the stagnation temperature, is fixed. Thus, Eq. 11.75 allows us to calculate values of fluid

temperature corresponding to values of fluid pressure in the Fanno flow. We postpone our discus-

sion of how pressure is determined until later.

As with earlier discussions in this chapter, it is helpful to describe Fanno flow with a temper-

ature–entropy diagram. From the second T ds relationship, an expression for entropy variation was

already derived 1Eq. 11.222. If the temperature, pressure, and entropy, at the entrance of

the Fanno flow duct are considered as reference values, then Eq. 11.22 yields

(11.76)

Equations 11.75 and 11.76 taken together result in a curve with T–s coordinates as is illustrated in

Fig. 11.16. This curve involves a given gas 1 and R2 with fixed values of stagnation temperature,

density–velocity product, and inlet temperature, pressure, and entropy. Curves like the one sketched

in Fig. 11.16 are called Fanno lines.

cp

s � s1 � cp ln 
T

T1

� R ln 
p

p1

s1,p1,T1,

T0,

rV,

T �
1rV22T 2

2cp1p
2�R22

� T0 � constant

T �
1rV22

2cpr
2

� T0 � constant

T �
V 2

2cp

� T0 � constant

ȟ � ȟ0 � cp 1T � T02

h0

ȟ �
V 2

2
� ȟ0 � constant
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■ Figure 11.15 Adiabatic constant area flow.

Adiabatic flow

Insulated wall

Control volume

Section (1) Section (2)

■ Figure 11.16 The T –s diagram for
Fanno flow.

Entropy increases
in Fanno flows
because of wall
friction.

Ta

s

pa

T

a

Constant entropy line

Fanno line
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11.5 Nonisentropic Flow of an Ideal Gas 631

GIVEN Air enters [section 112] an insulated, con-

stant cross-sectional area duct with the following properties:

 p1 � 99 kPa

 T1 � 286 K

 T0 � 288 K

1k � 1.42

Compressible Flow with Friction (Fanno Flow)EXAMPLE 11.11

SOLUTION

Eq. 4 becomes

or

For kPa we have from Eq. 1

or

Thus,

Hence,

(Ans)

where T is in 

From Eq. 2, we obtain

or

(Ans)

Proceeding as outlined above, we construct the table of val-

ues shown below and graphed as the Fanno line in Fig. E11.11.

s � s1 � 181.7 J�kg # K

 � 1286.9 J�kg # K2 ln a
48 � 103  Pa

99 � 103 Pa
b

 s � s1 � 11004 J�kg # K2 ln a
278.7 K

286 K
b

K.

T � 278.7 K

0.12 � 10�3T 2 � T � 288 � 0

0.12 � 10�3 3 1kg # m�s22�N # K 4 T2 � T � 288 K � 0

 � 288 K

T �
181.8 kg�m2s22 T 2

211004 J�kg # K2 
148 � 103 Pa22

1286.9 J�kg # K2

p � 48

rV � 81.8 kg�m2s

rV �
199 � 103 Pa20.21339 m�s2
1286.9 J�kg # K2 1286 K2

To plot the Fanno line we can use Eq. 11.75

(1)

and Eq. 11.76

(2)

to construct a table of values of temperature and entropy change

corresponding to different levels of pressure in the Fanno flow.

We need values of the ideal gas constant and the specific heat

at constant pressure to use in Eqs. 1 and 2. From Table 1.4 we read

for air

From Eq. 11.14 we obtain

(3)

or

From Eqs. 11.1 and 11.69 we obtain

and is constant for this flow

(4)

But

and from Eq. 11.56,

Thus, with

 � 339 m�s
2RT1k � 211.42 1286.9 J�kg # K2 1286 K2

Ma1 �
Aa

1

0.993
� 1b �0.2 � 0.2

Ma1 � 5 1T0�T1 � 12� 3 1k � 12�2 4 61�2, or

T1

T0

�
286 K

288 K
� 0.993

rV � r1V1 �
p1

RT1

 Ma11RT1k

rV

rV �
p

RT
 Ma1RTk

 � 1004 J�kg # K

cp �
1286.9 J�kg # K2 11.42

1.4 � 1

cp �
Rk

k � 1

� 1004 J�kg # KR � 286.9 J�kg # K

s � s1 � cp ln 
T

T1

� R ln 
p

p1

T �
1rV22T 2

2cpp2�R2
� T0 � constant

FIND For Fanno flow, determine corresponding values of fluid

temperature and entropy change for various values of down-

stream pressures and plot the related Fanno line.

■ Figure E11.11

300

275

250

225

200

175
185 215 245 275 305

T
, 

K

s – s1, J/kg•K
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We can learn more about Fanno lines by further analyzing the equations that describe the

physics involved. For example, the second T ds equation 1Eq. 11.182 is

(11.18)

For an ideal gas

(11.7)

and

(11.1)

or

(11.77)

Thus, consolidating Eqs. 11.1, 11.7, 11.18, and 11.77 we obtain

(11.78)

Also, from the continuity equation 1Eq. 11.402, we get for Fanno flow , or

(11.79)

Substituting Eq. 11.79 into Eq. 11.78 yields

or

(11.80)

By differentiating the energy equation 111.742 obtained earlier, we obtain

(11.81)
dV

dT
� �

cp

V

ds

dT
�

cp

T
� R a�

1

V
 
dV

dT
�

1

T
b

T ds � cp dT � RT a�
dV

V
�

dT

T
b

dr

r
� �

dV

V

rV � constant

T ds � cp dT � RT a
dr

r
�

dT

T
b

dp

p
�

dr

r
�

dT

T

r �
p

RT

dȟ � cp dT

T ds � dȟ �
dp

r
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The maximum entropy difference occurs at a pressure of 18 kPa

and a temperature of 239.4 K.

COMMENT Note that for Fanno flow the entropy must

increase in the direction of flow. Hence, as discussed in the mate-

rial that follows this example, this flow can proceed either from

subsonic conditions upstream to a sonic condition 1 2
downstream or from supersonic conditions upstream to a sonic

condition downstream. The arrows in Fig. 11.11 indicate in which

direction a Fanno flow can proceed.

Ma � 1

p T s � s1

(kPa) (K) [J/kg . K]

48 278.7 181.7

41 275.6 215.7

34 270.6 251.0

28 264.0 282.0

21 249.3 307.0

18 239.4 310.5

14 220.0 297.8

12 206.8 279.9

10 190.0 247.0

9.6 185.6 235.3

Fanno flow proper-
ties can be obtained
from the second 
T ds equation com-
bined with the con-
tinuity and energy
equations.
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which, when substituted into Eq. 11.80, results in

(11.82)

The Fanno line in Fig. 11.16 goes through a state 1labeled state a2 for which At this

state, we can conclude from Eqs. 11.14 and 11.82 that

(11.83)

However, by comparing Eqs. 11.83 and 11.36 we see that the Mach number at state a is 1. Since

the stagnation temperature is the same for all points on the Fanno line [see energy equation 1Eq.

11.742], the temperature at point a is the critical temperature, for the entire Fanno line. Thus,

Fanno flow corresponding to the portion of the Fanno line above the critical temperature must be

subsonic, and Fanno flow on the line below must be supersonic.

The second law of thermodynamics states that, based on all past experience, entropy can only

remain constant or increase for adiabatic flows. For Fanno flow to be consistent with the second

law of thermodynamics, flow can only proceed along the Fanno line toward state a, the critical

state. The critical state may or may not be reached by the flow. If it is, the Fanno flow is choked.

Some examples of Fanno flow behavior are summarized in Fig. 11.17. A case involving subsonic

Fanno flow that is accelerated by friction to a higher Mach number without choking is illustrated

in Fig. 11.17a. A supersonic flow that is decelerated by friction to a lower Mach number without

choking is illustrated in Fig. 11.17b. In Fig. 11.17c, an abrupt change from supersonic to subsonic

flow in the Fanno duct is represented. This sudden deceleration occurs across a standing normal
shock wave that is described in more detail in Section 11.5.3.

The qualitative aspects of Fanno flow that we have already discussed are summarized in

Table 11.1 and Fig. 11.18. To quantify Fanno flow behavior we need to combine a relation-

ship that represents the linear momentum law with the set of equations already derived in this

chapter.

T*

T*,

Va � 1RTak

ds�dT � 0.

ds

dT
�

cp

T
� R a

cp

V 2
�

1

T
b
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■ Figure 11.17 (a) Subsonic Fanno flow. (b) Supersonic Fanno flow. (c) Normal shock occurrence in
Fanno flow.

T

s

(a)

1
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a

T

s

(b)

1

2

a

T

s

(c)

1

2

N
or

m
al

 s
ho

ck

a

Friction accelerates
a subsonic Fanno
flow.

■ Table 11.1

Summary of Fanno Flow Behavior

Flow

Parameter Subsonic Flow Supersonic Flow

Stagnation temperature Constant Constant

Ma Increases Decreases

1maximum is 12 1minimum is 12

Friction Accelerates flow Decelerates flow

Pressure Decreases Increases

Temperature Decreases Increases
■ Figure 11.18 Fanno flow.

T1

T0

T*
a

p0, I

p1

p1'

p0, a

T1'
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If the linear momentum equation 1Eq. 5.222 is applied to the Fanno flow through the control

volume sketched in Fig. 11.19a, the result is

where is the frictional force exerted by the inner pipe wall on the fluid. Since and

we obtain

(11.84)

The differential form of Eq. 11.84, which is valid for Fanno flow through the semi-infinitesimal

control volume shown in Fig. 11.19b, is

(11.85)

The wall shear stress, is related to the wall friction factor, f, by Eq. 8.20 as

(11.86)

By substituting Eq. 11.86 and into Eq. 11.85, we obtain

(11.87)

or

(11.88)

Combining the ideal gas equation of state 1Eq. 11.12, the ideal gas speed-of-sound equation 1Eq.

11.362, and the Mach number definition 1Eq. 11.462 with Eq. 11.88 leads to

(11.89)

Since then

or

(11.90)
d1V 22

V 2
�

d1Ma22

Ma2
�

dT

T

V 2 � Ma2RTk

V � Ma c � Ma 1RTk,

dp

p
�

fk

2
 Ma2 

dx

D
� k 

Ma2

2
 
d1V 22

V 2 
� 0

dp

p
�

f

p
 
rV 2

2
 
dx

D
�
r

p
 
d1V 22

2
� 0

�dp � fr 
V 2

2
 
dx

D
� rV dV

A � pD2�4

f �
8tw

rV 2

tw,

�dp �
twpD dx

A
� rV dV

p1 � p2 �
Rx

A
� rV1V2 � V12

1i.e. rV � r1V1 � r2V22,m
#

� rAV � constant

A1 � A2 � ARx

p1A1 � p2A2 � Rx � m
#
1V2 � V12
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Friction forces in
Fanno flow are
given in terms of
the friction factor.

■ Figure 11.19 (a) Finite control volume.
(b) Semi-infinitesimal control volume.

Flow

Section (1) Section (2)

Control volume

(a)

p1A1

Rx

p2A2

Flow

Semi-infinitesimal control volume

(b)

pA

x

D

w

(p +   p)A

δ

τ Dπ xδ

δ
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The application of the energy equation 1Eq. 5.692 to Fanno flow gave Eq. 11.74. If Eq. 11.74 is

differentiated and divided by temperature, the result is

(11.91)

Substituting Eqs. 11.14, 11.36, and 11.46 into Eq. 11.91 yields

(11.92)

which can be combined with Eq. 11.90 to form

(11.93)

We can merge Eqs. 11.77, 11.79, and 11.90 to get

(11.94)

Consolidating Eqs. 11.94 and 11.89 leads to

(11.95)

Finally, incorporating Eq. 11.93 into Eq. 11.95 yields

(11.96)

Equation 11.96 can be integrated from one section to another in a Fanno flow duct. We elect to

use the critical 1*2 state as a reference and to integrate Eq. 11.96 from an upstream state to the crit-

ical state. Thus

(11.97)

where is length measured from an arbitrary but fixed upstream reference location to a section in

the Fanno flow. For an approximate solution, we can assume that the friction factor is constant at

an average value over the integration length, We also consider a constant value of k. Thus,

we obtain from Eq. 11.97

(11.98)

For a given gas, values of can be tabulated as a function of Mach number for

Fanno flow. For example, values of for air Fanno flow are graphed as a

function of Mach number in Fig. D.2 in Appendix D and in the figure in the margin. Note that the

critical state does not have to exist in the actual Fanno flow being considered, since for any two

sections in a given Fanno flow

(11.99)

The sketch in Fig. 11.20 illustrates the physical meaning of Eq. 11.99.

For a given Fanno flow 1constant specific heat ratio, duct diameter, and friction factor2 the

length of duct required to change the Mach number from to can be determined from Eqs.

11.98 and 11.99 or a graph such as Fig. D.2. To get the values of other fluid properties in the Fanno

flow field we need to develop more equations.

Ma2Ma1

f 1/* � /22

D
�

f 1/* � /12

D
�

f

D
 1/1 � /22

1k � 1.42f 1/* � /2�D
f 1/* � /2�D

1

k
 
11 � Ma22

Ma2
�

k � 1

2k
 ln e

3 1k � 12�2 4Ma2

1 � 3 1k � 12�2 4Ma2
f �

f 1/* � /2
D

/* � /.

/

�
Ma*�1

Ma

 
11 � Ma22 d1Ma22

51 � 3 1k � 12�2 4  Ma26kMa4
� �

/*

/
 
f  

dx

D

11 � Ma22 d1Ma22

51 � 3 1k � 12�2 4Ma26kMa4
� f 

dx

D

1

2
 11 � kMa22 

d1V 22

V 2
�

d1Ma22

Ma2
�

fk

2
 Ma2 

dx

D
� 0

dp

p
�

1

2
 
d1V 22

V 2
�

d1Ma22

Ma2

d1V 22

V 2
�

d1Ma22�Ma2

1 � 3 1k � 12�2 4Ma2

dT

T
�

k � 1

2
 Ma2 

d1V 22

V 2
� 0

dT

T
�

d1V 22

2cpT
� 0
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For Fanno flow, the
Mach number is a
function of the dis-
tance to the critical
state.

5.0

0.0
101.0

Ma

0.1

 f(
�*

 –
 �

)
__

__
__

__
D
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By consolidating Eqs. 11.90 and 11.92 we obtain

(11.100)

Integrating Eq. 11.100 from any state upstream in a Fanno flow to the critical 1*2 state leads to

(11.101)

Equations 11.68 and 11.69 allow us to write

(11.102)

Substituting Eq. 11.101 into Eq. 11.102 yields

(11.103)

Equations 11.101 and 11.103 are graphed in the margin for air.

From the continuity equation 1Eq. 11.402 we get for Fanno flow

(11.104)

Combining 11.104 and 11.103 results in

(11.105)
r

r*
� e

1 � 3 1k � 12�2 4Ma2

3 1k � 12�2 4Ma2
f

1�2

r

r*
�

V*

V

V

V*
� e

3 1k � 12�2 4Ma2

1 � 3 1k � 12�2 4Ma2
f

1�2

V

V*
�

Ma 1RTk

1RT*k
� Ma A

T

T*

T

T *
�

1k � 12�2

1 � 3 1k � 12�2 4Ma2

dT

T
� �

1k � 12

251 � 3 1k � 12�2 4Ma26
 d1Ma22
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■ Figure 11.20 (a) Unchoked Fanno flow. (b) Choked Fanno flow.

Frictionless and adiabatic
converging–diverging ductReference
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friction factor = f

Section
(2)

Imagined
choked flow

section

Flow

Imagined duct
friction factor = f
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(a)
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converging–diverging ductReference
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0.0
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For Fanno flow, the
length of duct
needed to produce a
given change in
Mach number can
be determined.
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The ideal gas equation of state 1Eq. 11.12 leads to

(11.106)

and merging Eqs. 11.106, 11.105, and 11.101 gives

(11.107)

This relationship is graphed in the margin for air.

Finally, the stagnation pressure ratio can be written as

(11.108)

which by use of Eqs. 11.59 and 11.107 yields

(11.109)

Values of for Fanno flow of air are

graphed as a function of Mach number 1using Eqs. 11.99, 11.101, 11.103, 11.107, and 11.1092 in Fig.

D.2 of Appendix D. The usefulness of Fig. D.2 is illustrated in Examples 11.12, 11.13, and 11.14. 

See Ref. 7 for additional compressible internal flow material.
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5.0

0.0
101.0

Ma

0.1

___p0

0*p

For Fanno flow,
thermodynamic and
flow properties can
be calculated as a
function of Mach
number.

GIVEN Standard atmospheric air 101

is drawn steadily through a frictionless, adiabatic con-

verging nozzle into an adiabatic, constant area duct as shown in

Fig. E11.12a. The duct is 2 m long and has an inside diameter of

0.1 m. The average friction factor for the duct is estimated as be-

ing equal to 0.02. 

FIND What is the maximum mass flowrate through the duct?

For this maximum flowrate, determine the values of static tem-

perature, static pressure, stagnation temperature, stagnation pres-

sure, and velocity at the inlet [section 112] and exit [section 122] of

the constant area duct. Sketch a temperature–entropy diagram for

this flow.

kPa1abs2 4
3T0 � 288 K, p0 �

Choked Fanno FlowEXAMPLE 11.12

(b)

2

Fanno line

p0.1 =
101 kPa (abs)

p0.2 =
84 kPa (abs)

p2 =
45 kPa (abs)

p1 =
77 kPa (abs)

T1 = 268 K

T0 = 288 K

T2 = 240 K

300

290

280

270

260

250

240

230
0 10 20 30 40 50

T
, 

K

s – s1, J_____
(kg•K)

1

■ Figure E11.12

p0 = 101 kPa (abs)
Frictionless and
adiabatic nozzle

Adiabatic duct with friction
factor f = 0.02

Standard atmospheric air
T0 = 288K

Control volume

Section (1) Section (2)

� = 2 m

(a)

D = 0.1 m

SOLUTION

We consider the flow through the converging nozzle to be isen-

tropic and the flow through the constant area duct to be Fanno

flow. A decrease in the pressure at the exit of the constant area

duct 1back pressure2 causes the mass flowrate through the nozzle

and the duct to increase. The flow throughout is subsonic. The

maximum flowrate will occur when the back pressure is lowered

to the extent that the constant area duct chokes and the Mach

number at the duct exit is equal to 1. Any further decrease of back

pressure will not affect the flowrate through the nozzle–duct

combination.
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For the maximum flowrate condition, the constant area duct

must be choked, and

(1)

With for air and the above calculated value of 

we could use Eq. 11.98 to determine a value of Mach

number at the entrance of the duct [section 112]. With and

Ma1 known, we could then rely on Eqs. 11.101, 11.103, 11.107,

and 11.109 to obtain values of 

Alternatively, for air we can use Fig. D.2 with

and read off values of and

The pipe entrance Mach number, also represents the Mach

number at the throat 1and exit2 of the isentropic, converging nozzle.

Thus, the isentropic flow equations of Section 11.4 or Fig. D.1 can

be used with Ma1. We use Fig. D.1 in this example.

With known, we can enter Fig. D.1 and get values of

and Through the isentropic nozzle, the values

of and are each constant, and thus and can be

readily obtained.

Since also remains constant through the constant area duct

1see Eq. 11.752, we can use Eq. 11.63 to get Thus,

(2)

Since we get from Eq. 2,

(3) (Ans)

With known, we can calculate from Eq. 11.36 as

Thus, since 

we obtain

(4) (Ans)

Now can be obtained from V* and Having and

we can get the mass flowrate from

(5)

Values of the other variables asked for can be obtained from the

ratios mentioned.

Entering Fig. D.2 with we read

(6)

(7)

(8)

(9)

(10) 
p0,1

p*0
� 1.16

 
p1

p*
� 1.7

 
V1

V*
� 0.66

 
T1

T*
� 1.1

 Ma1 � 0.63

f 1/* � /2�D � 0.4

m
#

� r1A1V1

V1

A1, r1,V1�V*.V1

V* � 310 m�s � V2

1m�s22,1 J�kg � 1 N # m�kg � 1 1kg # m�s22 # m�kg �

 � 310 1J�kg21�2
 � 2 3 1286.9 J2� 1kg # K2 4 1240 K2 11.42

 V* � 1RT*k

V*T*

T* � 10.83332 1288 K2 � 240 K � T2

T0 � 288 K,

T*

T0

�
2

k � 1
�

2

1.4 � 1
� 0.8333

T*.

T0

r1T1, p1,r0T0, p0,

r1�r0.T1�T0, p1�p0,

Ma1

Ma1,

p0,1�p*0.

p1�p*,V1�V*,Ma1, T1�T*,D � 0.4

f 1/* � /12�1k � 1.42,
p1�p*, and p0,1�p*0.V1�V*,T1�T*,

k � 1.4

D � 0.4,

f 1/* � /12�k � 1.4

f 1/* � /12

D
�

f 1/2 � /12

D
�
10.022 12 m2

10.1 m2
� 0.4

Entering Fig. D.1 with we read

(11)

(12)

(13)

Thus, from Eqs. 4 and 8 we obtain

(Ans)

From Eq. 13 we get

and from Eq. 5 we conclude that

(Ans)

From Eq. 11, it follows that

(Ans)

Equation 12 yields

(Ans)

The stagnation temperature, remains constant through this

adiabatic flow at a value of

(Ans)

The stagnation pressure, at the entrance of the constant area

duct is the same as the constant value of stagnation pressure

through the isentropic nozzle. Thus

(Ans)

To obtain the duct exit pressure we can use Eqs. 9 and

12. Thus,

(Ans)

For the duct exit stagnation pressure we can use 

Eq. 10 as

(Ans)

The stagnation pressure, decreases in a Fanno flow because of

friction.

COMMENT Use of graphs such as Figs. D.1 and D.2 illus-

trates the solution of a problem involving Fanno flow. The T–s
diagram for this flow is shown in Fig. E.11.12b, where the

entropy difference, is obtained from Eq. 11.22.s2 � s1,

p0,

 � 87.1 kPa1abs2

p0,2 � a
p*

0

p0,1

b 1p0,12 � a
1

1.16
b 3101 kPa1abs2 4

1p0,2 � p*
0
2

 � 45 kPa1abs2

p2 � a
p*

p1

b a
p1

p0,1

b 1p0,12 � a
1

1.7
b 10.762 3101 kPa1abs2 4

1p2 � p*2

p0,1 � 101 kPa1abs2

p0,

T0,1 � T0,2 � 288 K

T0,

p1 � 10.762 3101 kPa1abs2 4 � 77 kPa1abs2

T1 � 10.932 1288 K2 � 268 K

 � 1.65 kg�s

m
#

� 11.02 kg�m32 c
p10.1 m22

4
d  1206 m�s2

r1 � 0.83r0,1 � 10.832 11.23 kg�m32 � 1.02 kg�m3

V1 � 10.662 1310 m�s2 � 205 m�s

 
r1

r0,1

� 0.83

 
p1

p0,1

� 0.76

 
T1

T0

� 0.93

Ma1 � 0.63
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GIVEN The duct in Example 11.12 is shortened by 50%, but

the duct discharge pressure is maintained at the choked flow value

for Example 11.12, namely,

pd � 45 kPa1abs2

Effect of Duct Length on Choked Fanno FlowEXAMPLE 11.13

SOLUTION

which is read in Fig. D.1 for Thus,

(3)

We get from

(4)

from Fig. D.2 for The value of V* is the same as it

was in Example 11.12, namely,

(5)

Thus, from Eqs. 4 and 5 we obtain

(6)

and from Eqs. 1, 3, and 6 we get

(Ans)

The mass flowrate associated with a shortened tube is larger than

the mass flowrate for the longer tube, This trend is

general for subsonic Fanno flow. 

COMMENT For the same upstream stagnation state and

downstream pressure, the mass flowrate for the Fanno flow will

decrease with increase in length of duct for subsonic flow. Equiv-

alently, if the length of the duct remains the same but the wall fric-

tion is increased, the mass flowrate will decrease.

m
#

� 1.65 kg�s.

� 1.73 kg�s

m
#

� 10.97 kg�m32 c
p10.1m22

4
d  1226 m�s2

V1 � 10.732 13102 � 226 m�s

V* � 310 m�s

Ma1 � 0.7.

V1

V*
� 0.73

V1

r1 � 10.792 11.23 kg�m32 � 0.97 kg�m3

Ma1 � 0.7.We guess that the shortened duct will still choke and check our

assumption by comparing with p*. If the flow is

choked; if not, another assumption has to be made. For choked flow

we can calculate the mass flowrate just as we did for Example 11.12.

For unchoked flow, we will have to devise another strategy.

For choked flow

and from Fig. D.2, we read the values 

With we use Fig. D.1 and get

Now the duct exit pressure can be obtained from

and we see that Our assumption of choked flow is jus-

tified. The pressure at the exit plane is greater than the surround-

ing pressure outside the duct exit. The final drop of pressure

from 48.5 kPa1abs2 to 45 kPa1abs2 involves complicated three-

dimensional flow downstream of the exit.

To determine the mass flowrate we use

(1)

The density at section 112 is obtained from

(2)
r1

r0,1

� 0.79

m
#

� r1A1V1

pd 6 p*.

 � a
1

1.5
b 10.722 3101 kPa1abs2 4 � 48.5 kPa1abs2

 p2 � p* � a
p*

p1

b a
p1

p0,1

b 1p0,12

1p2 � p*2

p1

p0

� 0.72

Ma1 � 0.70,p* � 1.5.

Ma1 � 0.70 and p1�

f 1/* � /12

D
�
10.022 11 m2

0.1 m
� 0.2

pd 6 p*,pd

FIND Will shortening the duct cause the mass flowrate through

the duct to increase or decrease? Assume that the average friction

factor for the duct remains constant at a value of f � 0.02.

GIVEN The same flowrate obtained in Example 11.12 

is desired through the shortened duct of Example 11.13

Assume f remains constant at a value of 0.02. 1/2 � /1 � 1 m2.
1.65 kg�s2

1m� �

Unchoked Fanno FlowEXAMPLE 11.14

SOLUTION

from Example 11.12, and from Fig. D.2

f 1/* � /12

D
� 0.4

Ma1 � 0.63Since the mass flowrate of Example 11.12 is desired, the Mach

number and other properties at the entrance of the constant area

duct remain at the values determined in Example 11.12. Thus,

FIND Determine the Mach number at the exit of the duct,

and the back pressure, required. p2,

M2,
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For this example,

or

so that

(1)

By using the value from Eq. 1 and Fig. D.2, we get

(Ans)

and

(2)
p2

p*
� 1.5

Ma2 � 0.70

f 1/* � /22

D
� 0.2

10.022 11 m2

0.1 m
� 0.4 �

f 1/* � /22

D

f 1/2 � /12

D
�

f 1/* � /12

D
�

f 1/* � /22

D

We obtain from

where is given in Eq. 2 and and are

the same as they were in Example 11.12. Thus,

(Ans)

COMMENT A larger back pressure [68.0 kPa1abs2] than the

one associated with choked flow through a Fanno duct [45 kPa1abs2]
will maintain the same flowrate through a shorter Fanno duct with

the same friction coefficient. The flow through the shorter duct is not

choked. It would not be possible to maintain the same flowrate

through a Fanno duct longer than the choked one with the same fric-

tion coefficient, regardless of what back pressure is used.

� 68.0 kPa1abs2

p2 � 11.52 a
1

1.7
b 10.762 3101 kPa1abs2 4

p0,1p*�p1, p1�p0,1,p2�p*

p2 � a
p2

p*
b a

p*

p1

b a
p1

p0,1

b 1p0,12

p2

11.5.2 Frictionless Constant Area Duct Flow with Heat Transfer
(Rayleigh Flow)

Consider the steady, one-dimensional, and frictionless flow of an ideal gas through the constant

area duct with heat transfer illustrated in Fig. 11.21. This is Rayleigh flow. Application of the

linear momentum equation 1Eq. 5.222 to the Rayleigh flow through the finite control volume

sketched in Fig. 11.21 results in

01frictionless flow2

or

(11.110)

Use of the ideal gas equation of state 1Eq. 11.12 in Eq. 11.110 leads to

(11.111)

Since the flow cross-sectional area remains constant for Rayleigh flow, from the continuity equa-

tion 1Eq. 11.402 we conclude that

For a given Rayleigh flow, the constant in Eq. 11.111, the density–velocity product, and the

ideal gas constant are all fixed. Thus, Eq. 11.111 can be used to determine values of fluid temper-

ature corresponding to the local pressure in a Rayleigh flow.

To construct a temperature–entropy diagram for a given Rayleigh flow, we can use Eq. 11.76,

which was developed earlier from the second T ds relationship. Equations 11.111 and 11.76 can

be solved simultaneously to obtain the curve sketched in Fig. 11.22. Curves like the one in 

Fig. 11.22 are called Rayleigh lines.

rV,

rV � constant

p �
1rV22 RT

p
� constant

p �
1rV22

r
� constant

p1A1 � m
#
V1 � p2A2 � m

#
V2 � Rx

Rayleigh flow in-
volves heat transfer
with no wall fric-
tion and constant
cross-sectional area.

■ Figure 11.21 Rayleigh flow.

Frictionless and adiabatic
converging–diverging duct

Semi-infinitesimal
control volume

Section (1) Section (2)Finite
control volumeFlow

Frictionless duct with
heat transfer

D = constant
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■ Figure 11.22 Rayleigh line.

Ma < 1

Ma > 1

a (Maa = 1)

Mab = 

b

T

s

( )1_
k√

GIVEN Air enters [section 112] a frictionless, con-

stant flow cross-sectional area duct with the following properties

(the same as in Example 11.11):

 p1 � 99 kPa

 T1 � 286 K

 T0 � 288 K

1k � 1.42

Frictionless, Constant Area Compressible Flow 
with Heat Transfer (Rayleigh Flow)

EXAMPLE 11.15

FIND For Rayleigh flow, determine corresponding values of

fluid temperature and entropy change for various levels of down-

stream pressure and plot the related Rayleigh line.

SOLUTION

To plot the Rayleigh line asked for, use Eq. 11.111

(1)

and Eq. 11.76

(2)

to construct a table of values of temperature and entropy change

corresponding to different levels of pressure downstream in a

Rayleigh flow.

Use the value of ideal gas constant for air from Table 1.4

and the value of specific heat at constant pressure for air from Ex-

ample 11.11, namely,

Also, from Example 11.11, For the

given inlet [section 112] conditions, we get

Thus, from Eq. 1 we get

 � 99 kPa � 5353 kg�m # s2 � constant

p �
1rV22 RT

p
� 99 kPa � 1286.9 J�kg # K2210.8 m3�kg2

 � 0.8 m3�kg

RT1

p1

�
1286.9 J�kg # K2 1286 K2

99 � 103 Pa

rV � 81.8 kg�m2 # s.

cp � 1004 J�kg # K

R � 286.9 J�kg # K

s � s1 � cp ln 
T

T1

� R ln 
p

p1

p �
1rV22 RT

p
� constant

or, since 

(3)

With the downstream pressure of , we can obtain the

downstream temperature by using Eq. 3 with the fact that

Hence, from Eq. 3,

or

From Eq. 2 with the downstream pressure and tem-

perature we get

By proceeding as outlined above, we can construct the table of

values shown below and graph the Rayleigh line of Fig. E11.15.

s � s1 � 645 J�kg # K

 � 1286.9 J�kg # K2 ln a
93,000 Pa

99,000 Pa
b

s � s1 � 11004 J�kg # K2 ln a
534 K

286 K
b

T � 534 K

p � 93 kPa

T � 534 K

93 � 103 Pa � 320.6 1N�m22�K 4  T � 104 kPa

� 20.6 1N�m22�K

1rV22R

p
�
181.8 kg�m2 # s2 1286.9 J�kg # K2

93 � 103 Pa

p � 93 kPa

� 104 kPa � constant

p �
1rV22 RT

p
� 99 � 103 kPa � 15353 � 103 kPa2

1 kg�m # s2 � N�m2
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COMMENT Depending on whether the flow is being heated

or cooled, it can proceed in either direction along the curve.

■ Figure E11.15

p T
(kPa) (K) [J/kg . K]

93 534 645

86 807 1082

79 1028 1349

72 1199 1530

62 1356 1697

55 1404 1766

52 1409 1786

51.5 1409 1789

48 1400 1802

43 1366 1809

41 1346 1808

38 1306 1800

34 1240 1799

31 1179 1755

28 1109 1723

14 656 1395

7 354 974

s � s1

1500

1200

900

600

300

0
500 1000 1500

T
, 
K

s – s1, J/kg•K

At point a on the Rayleigh line of Fig. 11.22, To determine the physical impor-

tance of point a, we analyze further some of the governing equations. By differentiating the linear

momentum equation for Rayleigh flow 1Eq. 11.1102, we obtain

or

(11.112)

Combining Eq. 11.112 with the second T ds equation 1Eq. 11.182 leads to

(11.113)

For an ideal gas 1Eq. 11.72 Thus, substituting Eq. 11.7 into Eq. 11.113 gives

or

(11.114)

Consolidation of Eqs. 11.114, 11.112 1linear momentum2, 11.1, 11.77 1differentiated equation of

state2, and 11.79 1continuity2 leads to

(11.115)

Hence, at state a where Eq. 11.115 reveals that

(11.116)

Comparison of Eqs. 11.116 and 11.36 tells us that the Mach number at state a is equal to 1,

(11.117)

At point b on the Rayleigh line of Fig. 11.22, From Eq. 11.115 we get

dT

ds
�

1

ds�dT
�

1

1cp�T2 � 1V�T2 3 1T�V2 � 1V�R2 4�1

dT�ds � 0.

Maa � 1

Va � 1RTak

ds�dT � 0,

ds

dT
�

cp

T
�

V

T
 

1

3 1T�V2 � 1V�R2 4

ds

dT
�

cp

T
�

V

T
 
dV

dT

T ds � cp dT � V dV

dȟ � cp dT.

T ds � dȟ � V dV

dp

r
� �V dV

dp � �rV dV

ds�dT � 0.

The maximum
entropy state on the
Rayleigh line corre-
sponds to sonic
conditions.
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which for 1point b2 gives

(11.118)

The flow at point b is subsonic Recall that for any gas.

To learn more about Rayleigh flow, we need to consider the energy equation in addition to

the equations already used. Application of the energy equation 1Eq. 5.692 to the Rayleigh flow

through the finite control volume of Fig. 11.21 yields

0 1negligibly small 0 1flow is steady

for gas flow2 throughout2

or in differential form for Rayleigh flow through the semi-infinitesimal control volume of Fig. 11.21

(11.119)

where is the heat transfer per unit mass of fluid in the semi-infinitesimal control volume.

By using in Eq. 11.119, we obtain

(11.120)

Thus, by combining Eqs. 11.36 1ideal gas speed of sound2, 11.46 1Mach number2, 11.1 and 11.77

1ideal gas equation of state2, 11.79 1continuity2, and 11.112 1linear momentum2 with Eq. 11.120 1en-

ergy2 we get

(11.121)

With the help of Eq. 11.121, we see clearly that when the Rayleigh flow is subsonic 

fluid heating increases fluid velocity while fluid cooling decreases fluid ve-

locity. When Rayleigh flow is supersonic fluid heating decreases fluid velocity and fluid

cooling increases fluid velocity.

The second law of thermodynamics states that, based on experience, entropy increases with

heating and decreases with cooling. With this additional insight provided by the conservation of

energy principle and the second law of thermodynamics, we can say more about the Rayleigh

line in Fig. 11.22. A summary of the qualitative aspects of Rayleigh flow is outlined in Table

11.2 and Fig. 11.23. Along the upper portion of the line, which includes point b, the flow is sub-

sonic. Heating the fluid results in flow acceleration to a maximum Mach number of 1 at point

a. Note that between points b and a along the Rayleigh line, heating the fluid results in a tem-

perature decrease and cooling the fluid leads to a temperature increase. This trend is not surpris-

ing if we consider the stagnation temperature and fluid velocity changes that occur between

points a and b when the fluid is heated or cooled. Along the lower portion of the Rayleigh curve

the flow is supersonic. Rayleigh flows may or may not be choked. The amount of heating or

cooling involved determines what will happen in a specific instance. As with Fanno flows, an

abrupt deceleration from supersonic flow to subsonic flow across a normal shock wave can also

occur in Rayleigh flows.

1Ma 7 12,
1dq 6 021dq 7 02

1Ma 6 12,

dV

V
�
dq

cpT
 

1

11 � Ma22

dV

V
�
dq

cpT
c
V

T
 
dT

dV
�

V 21k � 12

kRT
d

�1

dȟ � cp dT � Rk dT� 1k � 12
dq

dȟ � V dV � dq

m
#
c ȟ2 � ȟ1 �

V 2
2 � V1

2

2
� g1z2 � z12 d � Q

#
net
in

� W
#

shaft
net in

k 7 11Mab 6 1.02.

Mab � B
1

k

dT�ds � 0
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Table 11.2

Summary of Rayleigh Flow Characteristics

Heating Cooling

Acceleration Deceleration

Deceleration AccelerationMa 7 1

Ma 6 1

Fluid temperature
reduction can ac-
company heating a
subsonic Rayleigh
flow.
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To quantify Rayleigh flow behavior we need to develop appropriate forms of the governing

equations. We elect to use the state of the Rayleigh flow fluid at point a of Fig. 11.22 as the refer-

ence state. As shown earlier, the Mach number at point a is 1. Even though the Rayleigh flow be-

ing considered may not choke and state a is not achieved by the flow, this reference state is useful.

If we apply the linear momentum equation 1Eq. 11.1102 to Rayleigh flow between any up-

stream section and the section, actual or imagined, where state a is attained, we get

or

(11.122)

By substituting the ideal gas equation of state 1Eq. 11.12 into Eq. 11.122 and making use of the ideal

gas speed-of-sound equation 1Eq. 11.362 and the definition of Mach number 1Eq. 11.462, we obtain

(11.123)

This relationship is graphed in the margin for air.

From the ideal gas equation of state 1Eq. 11.12 we conclude that

(11.124)

Conservation of mass 1Eq. 11.402 with constant A gives

(11.125)

which when combined with Eqs. 11.36 1ideal gas speed of sound2 and 11.46 1Mach number defi-

nition2 gives

(11.126)

Combining Eqs. 11.124 and 11.126 leads to

(11.127)

which when combined with Eq. 11.123 gives 1also see margin figure2

(11.128)
T

Ta

� c
11 � k2Ma

1 � kMa2
d

2

T

Ta

� a
p

pa
 Mab

2

ra

r
� Ma B

T

Ta

ra

r
�

V

Va

T

Ta

�
p

pa
 
ra

r

p

pa
�

1 � k

1 � kMa2

p

pa
�
rV 2

pa
� 1 �

ra

pa
 Va

2

p � rV 2 � pa � raVa
2

644 Chapter 11 ■ Compressible Flow

2.0

1.0

0.0
101.0

Ma

0.1

T__
Ta

2.0

1.0

0.0
101.0

Ma

0.1

p__
pa

■ Figure 11.23 (a) Subsonic Rayleigh flow. (b) Supersonic Rayleigh flow. (c) Normal shock in a
Rayleigh flow.
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From Eqs. 11.125, 11.126, and 11.128 we see that

(11.129)

This relationship is graphed in the margin for air.

The energy equation 1Eq. 5.692 tells us that because of the heat transfer involved in Rayleigh

flows, the stagnation temperature varies. We note that

(11.130)

We can use Eq. 11.56 1developed earlier for steady, isentropic, ideal gas flow2 to evaluate and

because these two temperature ratios, by definition of the stagnation state, involve isen-

tropic processes. Equation 11.128 can be used for Thus, consolidating Eqs. 11.130, 11.56,

and 11.128 we obtain

(11.131)

This relationship is graphed in the margin for air.

Finally, we observe that

(11.132)

We can use Eq. 11.59 developed earlier for steady, isentropic, ideal gas flow to evaluate and

because these two pressure ratios, by definition, involve isentropic processes. Equation

11.123 can be used for Together, Eqs. 11.59, 11.123, and 11.132 give

(11.133)

This relationship is graphed in the margin for air.

Values of or and are graphed in Fig. D.3 of Appendix D

as a function of Mach number for Rayleigh flow of air The values in Fig. D.3 were calcu-

lated from Eqs. 11.123, 11.128, 11.129, 11.131, and 11.133. The usefulness of Fig. D.3 is illustrated

in Example 11.16. 

See Ref. 7 for a more advanced treatment of internal flows with heat transfer.

1k � 1.42.
p0�p0,aV�Va, T0�T0,a,p�pa, T�Ta, r�ra

p0

p0,a
�

11 � k2

11 � kMa22
 c a

2

k � 1
b a1 �

k � 1

2
 Ma2b d

k�1k�12

p�pa.

pa�p0,a

p0�p

p0

p0,a
� a

p0

p
b

 

a
p

pa
b a

pa

p0,a
b

T0

T0,a

�

21k � 12Ma2 a1 �
k � 1

2
 Ma2b

11 � kMa222

T�Ta.

Ta�T0,a

T0�T

T0

T0,a

� a
T0

T
b

 

a
T

Ta

b a
Ta

T0,a

b

ra

r
�

V

Va

� Ma c
11 � k2Ma

1 � kMa2
d
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2.0

1.0

0.0
101.0

Ma

0.1

V __
_ V a

ρ__
_
r a

,

2.0

1.0

0.0
101.0

Ma

0.1

T0___
T0,a

Unlike Fanno flow,
the stagnation tem-
perature in Ray-
leigh flow varies.

2.0

1.0

0.0
101.0

Ma

0.1

p0___
p0,a

GIVEN The information in Table 11.2 shows us that subsonic

Rayleigh flow accelerates when heated and decelerates when

cooled. Supersonic Rayleigh flow behaves just opposite to sub-

sonic Rayleigh flow; it decelerates when heated and accelerates

when cooled. 

Effect of Mach Number and Heating/Cooling 
for Rayleigh Flow

FIND Using Fig. D.3 for air state whether velocity,

Mach number, static temperature, stagnation temperature, static

pressure, and stagnation pressure increase or decrease as subsonic

and supersonic Rayleigh flow is 1a2 heated, 1b2 cooled.

1k � 1.42,

EXAMPLE 11.16
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Heating Cooling

Subsonic Supersonic Subsonic Supersonic

V Increase Decrease Decrease Increase

Ma Increase Decrease Decrease Increase

T Increase for Increase Decrease for Decrease

Decrease for Increase for

Increase Increase Decrease Decrease

p Decrease Increase Increase Decrease

Decrease Decrease Increase Increasep0

T0


 1
 1
11�k 
 Ma11�k 
 Ma

11�k11�k
0 
 Ma 
0 
 Ma 


11.5.3 Normal Shock Waves

As mentioned earlier, normal shock waves can occur in supersonic flows through converging–

diverging and constant area ducts. Past experience suggests that normal shock waves involve de-

celeration from a supersonic flow to a subsonic flow, a pressure rise, and an increase of entropy.

To develop the equations that verify this observed behavior of flows across a normal shock, we ap-

ply first principles to the flow through a control volume that completely surrounds a normal shock

wave 1see Fig. 11.242. We consider the normal shock and thus the control volume to be infinitesi-

mally thin and stationary.

For steady flow through the control volume of Fig. 11.24, the conservation of mass princi-

ple yields

(11.134)

because the flow cross-sectional area remains essentially constant within the infinitesimal thickness

of the normal shock. Note that Eq. 11.134 is identical to the continuity equation used for Fanno and

Rayleigh flows considered earlier.

The friction force acting on the contents of the infinitesimally thin control volume surround-

ing the normal shock is considered to be negligibly small. Also for ideal gas flow, the effect of

gravity is neglected. Thus, the linear momentum equation 1Eq. 5.222 describing steady gas flow

through the control volume of Fig. 11.24 is

or for an ideal gas for which 

(11.135)

Equation 11.135 is the same as the linear momentum equation for Rayleigh flow, which was de-

rived earlier 1Eq. 11.1112.

p �
1rV22RT

p
� constant

p � rRT,

p � rV 2 � constant

rV � constant

V11.8 Blast waves

Normal shock
waves are assumed
to be infinitesimally
thin discontinuities.

SOLUTION

heating and friction cause the stagnation pressure to decrease.

Since stagnation pressure loss is considered undesirable in terms

of fluid mechanical efficiency, heating a fluid flow must be ac-

complished with this loss in mind.

COMMENT Note that for a small range of Mach numbers

cooling actually results in a rise in temperature, T.

Acceleration occurs when in Fig. D.3 increases. For decel-

eration, decreases. From Fig. D.3 and Table 11.2 the follow-

ing chart can be constructed.

From the Rayleigh flow trends summarized in the table below,

we note that heating affects Rayleigh flows much like friction af-

fects Fanno flows. Heating and friction both accelerate subsonic

flows and decelerate supersonic flows. More importantly, both

V�Va

V�Va
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For the control volume containing the normal shock, no shaft work is involved and the heat

transfer is assumed negligible. Thus, the energy equation 1Eq. 5.692 can be applied to steady gas

flow through the control volume of Fig. 11.24 to obtain

or, for an ideal gas, since and 

(11.136)

Equation 11.136 is identical to the energy equation for Fanno flow analyzed earlier 1Eq. 11.752.
The T ds relationship previously used for ideal gas flow 1Eq. 11.222 is valid for the 

flow through the normal shock 1Fig. 11.242 because it 1Eq. 11.222 is an ideal gas property

relationship.

From the analyses in the previous paragraphs, it is apparent that the steady flow of an

ideal gas across a normal shock is governed by some of the same equations used for describ-

ing both Fanno and Rayleigh flows 1energy equation for Fanno flows and momentum equation

for Rayleigh flow2. Thus, for a given density–velocity product gas 1R, k2, and conditions

at the inlet of the normal shock the conditions downstream of the shock 1state y2
will be on both a Fanno line and a Rayleigh line that pass through the inlet state 1state x2, as is

illustrated in Fig. 11.25. To conform with common practice we designate the states upstream

and downstream of the normal shock with x and y instead of numerals 1 and 2. The Fanno and

Rayleigh lines describe more of the flow field than just in the vicinity of the normal shock when

Fanno and Rayleigh flows are actually involved 1solid lines in Figs. 11.26a and 11.26b2. Other-

wise, these lines 1dashed lines in Figs. 11.26a, 11.26b, and 11.26c2 are useful mainly as a way

to better visualize how the governing equations combine to yield a solution to the normal shock

flow problem.

The second law of thermodynamics requires that entropy must increase across a normal shock

wave. This law and sketches of the Fanno line and Rayleigh line intersections, like those of 

Figs. 11.25 and 11.26, persuade us to conclude that flow across a normal shock can only proceed

from supersonic to subsonic flow. Similarly, in open-channel flows 1see Chapter 102 the flow across

a hydraulic jump proceeds from supercritical to subcritical conditions.

Since the states upstream and downstream of a normal shock wave are represented by the

supersonic and subsonic intersections of actual and�or imagined Fanno and Rayleigh lines, we

should be able to use equations developed earlier for Fanno and Rayleigh flows to quantify nor-

mal shock flow. For example, for the Rayleigh line of Fig. 11.26b

(11.137)
py

px
� a

py

pa
b a

pa

px
b

1Tx, px, and sx2,
1rV2,

T �
1rV22T 2

2cp1p
2�R22

� T0 � constant

p � rRTȟ � ȟ0 � cp1T � T02

ȟ �
V 2

2
� ȟ0 � constant
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Section (x)

Supersonic
flow

Subsonic
flow

Infinitesimally thin
control volume

Normal shock wave
Diverging

duct

Section (y)

■ Figure 11.24 Normal shock control volume.

The energy equa-
tion for Fanno flow
and the momentum
equation for
Rayleigh flow are
valid for flow
across normal
shocks.
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■ Figure 11.25 The relationship
between a normal shock and Fanno and
Rayleigh lines.
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But from Eq. 11.123 for Rayleigh flow we get

(11.138)

and

(11.139)

Thus, by combining Eqs. 11.137, 11.138, and 11.139 we get

(11.140)

Equation 11.140 can also be derived starting with

and using the Fanno flow equation 1Eq. 11.1072

As might be expected, Eq. 11.140 can be obtained directly from the linear momentum equation

since 

For the Fanno flow of Fig. 11.26a,

(11.141)
Ty

Tx

� a
Ty

T*
b a

T*

Tx

b

rV 2�p � V 2�RT � kV 2�RTk � k Ma2.

px � rxVx
2 � py � ryVy

2

p

p*
�

1

Ma
 e

1k � 12�2
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f
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px
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1 � kMax
2

1 � kMay
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�

1 � k
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2
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�
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2

648 Chapter 11 ■ Compressible Flow

■ Figure 11.26  (a) The normal shock in a
Fanno flow. (b) The normal shock in a Rayleigh
flow. (c) The normal shock in a frictionless and
adiabatic flow.
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From Eq. 11.101 for Fanno flow we get

(11.142)

and

(11.143)

A consolidation of Eqs. 11.141, 11.142, and 11.143 gives

(11.144)

We seek next to develop an equation that will allow us to determine the Mach number down-

stream of the normal shock, when the Mach number upstream of the normal shock, is

known. From the ideal gas equation of state 1Eq. 11.12, we can form

(11.145)

Using the continuity equation

with Eq. 11.145 we obtain

(11.146)

When combined with the Mach number definition 1Eq. 11.462 and the ideal gas speed-of-sound

equation 1Eq. 11.362, Eq. 11.146 becomes

(11.147)

Thus, Eqs. 11.147 and 11.144 lead to

(11.148)

which can be merged with Eq. 11.140 to yield

(11.149)

This relationship is graphed in the margin for air.

Thus, we can use Eq. 11.149 to calculate values of Mach number downstream of a normal

shock from a known Mach number upstream of the shock. As suggested by Fig. 11.26, to have a

normal shock we must have From Eq. 11.149 we find that 

If we combine Eqs. 11.149 and 11.140, we get

(11.150)

This relationship is graphed in the margin for air.
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� a

Ty
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Ty

Tx

b a
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1 � 3 1k � 12�2 4May
2

11.5 Nonisentropic Flow of an Ideal Gas 649
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0.0
5.01.0
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The flow changes
from supersonic to
subsonic across a
normal shock.
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0.0
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Max

py___
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This equation allows us to calculate the pressure ratio across a normal shock from a known up-

stream Mach number. Similarly, taking Eqs. 11.149 and 11.144 together we obtain

(11.151)

This relationship is graphed in the margin for air.

From the continuity equation 1Eq. 11.402, we have for flow across a normal shock

(11.152)

and from the ideal gas equation of state 1Eq. 11.12

(11.153)

Thus, by combining Eqs. 11.152, 11.153, 11.150, and 11.151, we get

(11.154)

This relationship is graphed in the margin for air.

The stagnation pressure ratio across the shock can be determined by combining

(11.155)

with Eqs. 11.59, 11.149, and 11.150 to get

(11.156)

This relationship is graphed in the margin for air.

Figure D.4 in Appendix D graphs values of downstream Mach numbers, pressure ratio,

temperature ratio, density ratio, , or velocity ratio, and stagnation pres-

sure ratio, as a function of upstream Mach number, for the steady flow across a nor-

mal shock wave of an ideal gas having a specific heat ratio These values were calculated

from Eqs. 11.149, 11.150, 11.151, 11.154, and 11.156.

Important trends associated with the steady flow of an ideal gas across a normal shock wave

can be determined by studying Fig. D.4. These trends are summarized in Table 11.3.

Examples 11.17 and 11.18 illustrate how Fig. D.4 can be used to solve fluid flow problems

involving normal shock waves.

k � 1.4.

Max,p0,y�p0,x,

Vx�Vy,ry�rxTy�Tx,py�px,

May,

p0,y

p0, x
�

a
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2
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2b
k�1k�12 

a1 �
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2
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k�11�k2

a
2k
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b
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b a
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b

ry
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�

Vx
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�
1k � 12Max
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265 32k� 1k � 12 4Max
2 � 16

5 1k � 122� 321k � 12 4 6Max
2
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0.0
5.01.0

Max

Ty___
Tx
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0.0
5.01.0

Max
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x
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y

  y __
_

  xρ ρ

Table 11.3

Summary of Normal Shock Wave Characteristics

Variable Change Across Normal Shock Wave

Mach number Decrease

Static pressure Increase

Stagnation pressure Decrease

Static temperature Increase

Stagnation temperature Constant

Density Increase

Velocity Decrease

Across a normal
shock the values of
some parameters
increase, some re-
main constant, and
some decrease.

1.0

0.0
5.01.0

Max

p0,y____ 
p0,x
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GIVEN Designers involved with fluid mechanics work hard at

minimizing loss of available energy in their designs. Adiabatic,

frictionless flows involve no loss in available energy. Entropy

remains constant for these idealized flows. Adiabatic flows with

friction involve available energy loss and entropy increase. Gen-

erally, larger entropy increases imply larger losses.

Stagnation Pressure Drop across a Normal ShockEXAMPLE 11.17

SOLUTION

stagnation pressure drop across the shock is appreciable. If a

shock occurs at only about 50% of the upstream

stagnation pressure is recovered.

In devices where supersonic flows occur, for example, high-

performance aircraft engine inlet ducts and high-speed wind tun-

nels, designers attempt to prevent shock formation, or if shocks

must occur, they design the flow path so that shocks are posi-

tioned where they are weak 1small Mach number2.
Of interest also is the static pressure rise that occurs across a

normal shock. These static pressure ratios, obtained from

Fig. D.4 are shown in the table for a few Mach numbers. For a de-

veloping boundary layer, any pressure rise in the flow direction is

considered as an adverse pressure gradient that can possibly cause

flow separation 1see Section 9.2.62. Thus, shock–boundary layer

interactions are of great concern to designers of high-speed flow

devices.

py�px,

Max � 2.5,

We assume that air behaves as a typical gas and use 

Fig. D.4 to respond to the above-stated requirements. Since

we can construct the following table with values of 

from Fig. D.4.

COMMENT When the Mach number of the flow entering the

shock is low, say the flow across the shock is nearly

isentropic and the loss in stagnation pressure is small. However,

as shown in Fig. E11.17, at larger Mach numbers, the entropy

change across the normal shock rises dramatically and the

Max � 1.2,

p0,y�p0,x

1 �
p0,y

p0,x
�

p0,x � p0,y

p0,x

1k � 1.42

FIND For normal shocks, show that the stagnation pressure

drop 1and thus loss2 is larger for higher Mach numbers.

1.0 1.0 0

1.2 0.99 0.01

1.5 0.93 0.07

2.0 0.72 0.28

2.5 0.50 0.50

3.0 0.33 0.67

3.5 0.21 0.79

4.0 0.14 0.86

5.0 0.06 0.94

p0,xp0,y�p0,xMax

p0,x � p0,y

1.0 1.0

1.2 1.5

1.5 2.5

2.0 4.5

3.0 10

4.0 18

5.0 29

py�pxMax

0
0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

p0,x – p0,y_________ 
p0,x

Max

■ Figure E11.17

GIVEN A total pressure probe is inserted into a supersonic air

flow. A shock wave forms just upstream of the impact hole and

head as illustrated in Fig. E11.18. The probe measures a total

pressure of 414 kPa. The stagnation temperature at the probe head

is The static pressure upstream of the shock is measured

with a wall tap to be 82 kPa.

FIND Determine the Mach number and velocity of the flow.

555 K.

Supersonic Flow Pitot TubeEXAMPLE 11.18

Wall static pressure tap

Total
pressure probe

x y

Supersonic
flow

Stagnation
pathline

Shock
wave

■ Figure E11.18
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SOLUTION

The stagnation temperature downstream of the shock was mea-

sured and found to be

Since the stagnation temperature remains constant across a nor-

mal shock 1see Eq. 11.1362,

For the isentropic flow upstream of the shock, Eq. 11.56 or

Fig. D.1 can be used. For 

or

With Eq. 3 we obtain

(Ans)

COMMENT Application of the incompressible flow Pitot

tube results 1see Section 3.52 would give highly inaccurate

results because of the large pressure and density changes

involved.

 � 678 m�s
Vx � 1.87 21286.9 J�kg # K2 1327 K2 11.42

Tx � 10.592 1555 K2 � 327 K

Tx

T0, x

� 0.59

Max � 1.9,

T0, x � T0,y � 555 K

T0,y � 555 K

We assume that the flow along the stagnation pathline is isen-

tropic except across the shock. Also, the shock is treated as a nor-

mal shock. Thus, in terms of the data we have

(1)

where is the stagnation pressure measured by the probe, and

is the static pressure measured by the wall tap. The stagnation

pressure upstream of the shock, is not measured.

Combining Eqs. 1, 11.156, and 11.59 we obtain

(2)

which is called the Rayleigh Pitot-tube formula. Values of 

from Eq. 2 are considered important enough to be included in 

Fig. D.4 for Thus, for and

we use Fig. D.4 1or Eq. 22 to ascertain that

(Ans)

To determine the flow velocity we need to know the static tem-

perature upstream of the shock, since Eqs. 11.36 and 11.46 can be

used to yield

(3)Vx � Max cx � Max 1RTxk

Max � 1.9

p0,y

px
�

414 kPa

82 kPa
� 5

k � 1.4k � 1.4.

p0,y�px

p0,y

px
�

5 3 1k � 12�2 4Max
26k�1k�12

5 32k� 1k � 12 4Max
2 � 3 1k � 12� 1k � 12 4 61�1k�12

p0, x,

px

p0,y

p0,y

px
� a

p0,y

p0, x
b a

p0, x

px
b

GIVEN Consider the converging–diverging duct of Example

11.8.

FIND Determine the ratio of back pressure to inlet stagnation

pressure, 1see Fig. 11.132, that will result in a standingpIII�p0, x

normal shock at the exit of the duct. What value of

the ratio of back pressure to inlet stagnation pressure would be

required to position the shock at Show related

temperature–entropy diagrams for these flows.

x � �0.3 m?

1x � �0.5 m2

Normal Shock in a Converging–Diverging DuctEXAMPLE 11.19

SOLUTION

Thus,

(Ans)

When the ratio of duct back pressure to inlet stagnation pressure,

is set equal to 0.36, the air will accelerate through the

converging–diverging duct to a Mach number of 2.8 at the duct

exit. The air will subsequently decelerate to a subsonic flow

across a normal shock at the duct exit. The stagnation pressure 

ratio across the normal shock, is 0.38 1Fig. D.4 forp0,y�p0,x,

pIII�p0, x,

 � 0.36 �
pIII

p0, x

py

p0, x
� a

py

px
b a

px

p0, x
b � 19.02 10.042

For supersonic, isentropic flow through the nozzle to just up-

stream of the standing normal shock at the duct exit, we have

from the table of Example 11.8 at 

and

From Fig. D.4 for we obtain

py

px
� 9.0

Max � 2.8

px

p0,x
� 0.04

Max � 2.8

x � �0.5 m

c11CompressibleFlow.qxd  9/26/12  10:30 PM  Page 652



11.6 Analogy between Compressible and Open-Channel Flows 653

2. A considerable amount of available energy is lost

across the shock.

For a normal shock at we note from the table of

Example 11.8 that and

(1)

From Fig. D.4 for we obtain ,

and

(2)

From Fig. D.1 for we get

(3)

For the ratio of duct exit area to local area 

is, using the area equation from Example 11.8,

(4)

Using Eqs. 3 and 4 we get

A2

A*
� a

Ay

A*
b a

A2

Ay

b � 11.242 11.8422 � 2.28

A2

Ay

�
0.1 � 10.522

0.1 � 10.322
� 1.842

1A2�Ay2x � �0.3 m,

Ay

A*
� 1.24

May � 0.56

p0,y

p0, x
� 0.66

May � 0.56py�px � 5.2,Max � 2.14

px

p0, x
� 0.10

Max � 2.14

x � �0.3 m,

Max � 2.8 Note that for the isentropic flow upstream of the shock,

1the actual throat area2, while for the isentropic flow down-

stream of the shock, 2.28�0.15 m2. With

we use Fig. D.1 and find and

(5)

Combining Eqs. 2 and 5 we obtain

(Ans)

When the back pressure, is set equal to 0.63 times the inlet

stagnation pressure, the normal shock will be positioned at

The corresponding T – s diagrams are shown in

Figs. E11.19a and E11.19b.

COMMENT Note that is less than the value of

this ratio for subsonic isentropic flow through the converging–

diverging duct, 1from Example 11.82 and is larger

than for duct flow with a normal shock at the exit

1see Fig. 11.132. Also the stagnation pressure ratio with the shock

at is much greater than the stagna-

tion pressure ratio, 0.38, when the shock occurs at the exit

of the duct.1x � �0.5 m2

�0.3 m, p0,y�p0, x � 0.66,x �

pIII�p0,x � 0.36,

 � 0.98p2�p0

p2�p0,x � 0.63

x � �0.3 m.

p0,x,

p2,

p2

p0, x
� a

p2

p0,y
b a

p0,y

p0, x
b � 10.952 10.662 � 0.63

p2

p0,y
� 0.95

Ma2 � 0.26A2�A* � 2.28

A* � A2�2.28 � 0.35 m2�
0.10 m2

A* �

■ Figure E11.19
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11.6 Analogy between Compressible and Open-Channel Flows

During a first course in fluid mechanics, students rarely study both open-channel flows 1Chap-

ter 102 and compressible flows. This is unfortunate because these two kinds of flows are strik-

ingly similar in several ways. Furthermore, the analogy between open-channel and compressible

flows is useful because important two-dimensional compressible flow phenomena can be simply
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and inexpensively demonstrated with a shallow, open-channel flow field in a ripple tank or 

water table.

The propagation of weak pressure pulses 1sound waves2 in a compressible flow can be

considered to be comparable to the movement of small-amplitude waves on the surface of an

open-channel flow. In each case—two-dimensional compressible flow and open-channel flow—

the influence of flow velocity on wave pattern is similar. When the flow velocity is less than

the wave speed, wave fronts can move upstream of the wave source and the flow is subsonic

1compressible flow2 or subcritical 1open-channel flow2. When the flow velocity is equal to the

wave speed, wave fronts cannot move upstream of the wave source and the flow is sonic 1com-

pressible flow2 or critical 1open-channel flow2. When the flow velocity is greater than the wave

speed, the flow is supersonic 1compressible flow2 or supercritical 1open-channel flow2. Normal

shocks can occur in supersonic compressible flows. Hydraulic jumps can occur in supercritical

open-channel flows. Comparison of the characteristics of normal shocks 1Section 11.5.32 and

hydraulic jumps 1Section 10.6.12 suggests a strong resemblance and thus analogy between the

two phenomena.

For compressible flows a meaningful dimensionless variable is the Mach number, where

(11.46)

In open-channel flows, an important dimensionless variable is the Froude number, where

(11.157)

The velocity of the channel flow is the acceleration of gravity is g, and the depth of the flow

is y. Since the speed of a small-amplitude wave on the surface of an open-channel flow, is 1see

Section 10.2.12

(11.158)

we conclude that

(11.159)

From Eqs. 11.46 and 11.159 we see the similarity between Mach number 1compressible flow2 and

Froude number 1open-channel flow2.
For compressible flow, the continuity equation is

(11.160)

where V is the flow velocity, is the fluid density, and A is the flow cross-sectional area. For an

open-channel flow, conservation of mass leads to

(11.161)

where is the flow velocity, and y and b are the depth and width of the open-channel flow. Com-

paring Eqs. 11.160 and 11.161 we note that if flow velocities are considered similar and flow area,

A, and channel width, b, are considered similar, then compressible flow density, is analogous to

open-channel flow depth, y.

It should be pointed out that the similarity between Mach number and Froude number is gen-

erally not exact. If compressible flow and open-channel flow velocities are considered to be sim-

ilar, then it follows that for Mach number and Froude number similarity the wave speeds c and 

must also be similar.

From the development of the equation for the speed of sound in an ideal gas 1see Eqs. 11.34

and 11.352 we have for the compressible flow

(11.162)

From Eqs. 11.162 and 11.158, we see that if y is to be similar to as suggested by comparing Eqs.

11.160 and 11.161, then k should be equal to 2. Typically or 1.67, not 2. This limitationk � 1.4

r

c � 21constant2 krk�1

coc

r,

Voc

ybVoc � constant

r

rAV � constant

Fr �
Voc

coc

coc � 1gy

coc,

Voc,

Fr �
Voc

1gy

Ma �
V

c

Compressible gas
flows and open-
channel liquid
flows are strikingly
similar in several
ways.
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A brief introduction to two-dimensional compressible flow is included here for those who are in-

terested. We begin with a consideration of supersonic flow over a wall with a small change of di-

rection as sketched in Fig. 11.27.

We apply the component of the linear momentum equation 1Eq. 5.222 parallel to the Mach

wave to the flow across the Mach wave. 1See Eq. 11.39 for the definition of a Mach wave.2 The

result is that the component of velocity parallel to the Mach wave is constant across the Mach

wave. That is, Thus, from the simple velocity triangle construction indicated in 

Fig. 11.27, we conclude that the flow accelerates because of the change in direction of the flow.

If several changes in wall direction are involved as shown in Fig. 11.28, then the supersonic flow

accelerates 1expands2 because of the changes in flow direction across the Mach waves 1also called

expansion waves2. Each Mach wave makes an appropriately smaller angle with the upstream wall

because of the increase in Mach number that occurs with each direction change 1see Section 11.32.
A rounded expansion corner may be considered as a series of infinitesimal changes in direction.

Conversely, even sharp corners are actually rounded when viewed on a small enough scale. Thus,

expansion fans as illustrated in Fig. 11.29 are commonly used for supersonic flow around a “sharp”

corner. If the flow across the Mach waves is considered to be isentropic, then Eq. 11.42 suggests

that the increase in flow speed is accompanied by a decrease in static pressure.

When the change in supersonic flow direction involves the change in wall orientation

sketched in Fig. 11.30, compression rather than expansion occurs. The flow decelerates and the

static pressure increases across the Mach wave. For several changes in wall direction, as indicated

in Fig. 11.31, several Mach waves occur, each at an appropriately larger angle with the upstream

wall. A rounded compression corner may be considered as a series of infinitesimal changes in

a

a

Vt1 � Vt2.

11.7 Two-Dimensional Compressible Flow

Expansion Mach wave 

p2 < p1

V2 > V1

Vt2 = Vt1 

Vn2 
p1

V1

Vn1 
Vt1

■ Figure 11.27 Flow acceleration across a
Mach wave.

■ Figure 11.28 Flow acceleration across
Mach waves.

Expansion Mach waves

α1 α2
α3

α4

to exactness is, however, usually not serious enough to compromise the benefits of the analogy

between compressible and open-channel flows.

■ Figure 11.30 Flow deceleration across a
Mach wave.

Compression Mach wave 

p2 > p1

V2 < V1

Vt2 = Vt1Vn2 

p1

V1

Vn1 
Vt1

■ Figure 11.29 Corner expansion fan.

V2 > V1

V1

Expansion fan

Supersonic flows
accelerate across
expansion Mach
waves.

V11.9 Wedge
oblique shocks
and expansions
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Compression Mach waves

■ Figure 11.31 Flow deceleration across
Mach waves.

Attached
oblique shock

(a) (b)

Detached
curved shock

■ Figure 11.33 Supersonic flow over a wedge: (a) Smaller wedge angle results in attached
oblique shock. (b) Large wedge angle results in detached curved shock.

In this chapter, consideration is given to the flow of gas involving substantial changes in fluid

density caused mainly by high speeds. While the flow of liquids may most often be considered

of constant density or incompressible over a wide range of speeds, the flow of gases and vapors

11.8 Chapter Summary and Study Guide

Compression
Mach waves 

V2 < V1

V1

Oblique shock wave 

■ Figure 11.32 Oblique shock wave.

direction and even sharp corners are actually rounded. Mach waves or compression waves can co-

alesce to form an oblique shock wave as shown in Fig. 11.32.

The above discussion of compression waves can be usefully extended to supersonic flow im-

pinging on an object. For example, for supersonic flow incident on a wedge-shaped leading edge

1see Fig. 11.332, an attached oblique shock can form as suggested in Fig. 11.33a. For the same

incident Mach number but with a larger wedge angle, a detached curved shock as sketched in 

Fig. 11.33b can result. In Example 11.19, we considered flow along a stagnation pathline across

a detached curved shock to be identical to flow across a normal shock wave.

From this brief look at two-dimensional supersonic flow, one can easily conclude that the

extension of these concepts to flows over immersed objects and within ducts can be exciting,

especially if three-dimensional effects are considered. Reference 6 provides much more on this sub-

ject than could be included here.

V11.11 Space Shut-
tle oblique shocks

V11.10 Bullet
oblique shocks
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compressible flow
ideal gas
internal energy
enthalpy
specific heat ratio
entropy
adiabatic
isentropic
Mach number
speed of sound
stagnation pressure
subsonic
sonic
Mach wave
supersonic
Mach cone
transonic flows
hypersonic flows
converging–diverging

duct
throat
temperature–entropy

(T–s) diagram
choked flow
critical state
critical pressure ratio
normal shock wave
oblique shock wave
expansion wave
overexpanded
underexpanded
nonisentropic flow
Fanno flow
Rayleigh flow

may involve substantial fluid density changes at higher speeds. At lower speeds, gas and vapor

density changes are not appreciable, and so these flows may be treated as incompressible.

Since fluid density and other fluid property changes are significant in compressible flows,

property relationships are important. An ideal gas, with well-defined fluid property relationships,

is used as an approximation of an actual gas. This profound simplification still allows useful con-

clusions to be made about compressible flows.

The Mach number is a key variable in compressible flow theory. Most easily understood as

the ratio of the local speed of flow and the speed of sound in the flowing fluid, it is a measure

of the extent to which the flow is compressible or not. It is used to define categories of com-

pressible flows, which range from subsonic (Mach number less than 1) to supersonic (Mach num-

ber greater than 1). The speed of sound in a truly incompressible fluid is infinite, so the Mach

numbers associated with liquid flows are generally low.

The notion of an isentropic or constant entropy flow is introduced. The most important isen-

tropic flow is one that is adiabatic (no heat transfer to or from the flowing fluid) and frictionless

(zero viscosity). This simplification, like the one associated with approximating real gases with an

ideal gas, leads to useful results including trends associated with accelerating and decelerating

flows through converging, diverging, and converging–diverging flow paths. Phenomena including

flow choking, acceleration in a diverging passage, deceleration in a converging passage, and the

achievement of supersonic flows are discussed.

Three major nonisentropic compressible flows considered in this chapter are Fanno flows,

Rayleigh flows, and flows across normal shock waves. Unusual outcomes include the conclusions

that friction can accelerate a subsonic Fanno flow, heating can result in fluid temperature reduc-

tion in a subsonic Rayleigh flow, and a flow can decelerate from supersonic flow to subsonic

flow across a very small distance. The value of temperature–entropy (T –s) diagramming of flows

to better understand them is demonstrated.

Numerous formulas describing a variety of ideal gas compressible flows are derived. These

formulas can be easily solved with computers. However, to provide the learner with a better grasp

of the details of a compressible flow process, a graphical approach, albeit approximate, is used.

The striking analogy between compressible and open-channel flows leads to a brief discus-

sion of the usefulness of a ripple tank or water table to simulate compressible flows.

Expansion and compression Mach waves associated with two-dimensional compressible

flows are introduced, as is the formation of oblique shock waves from compression Mach waves.

The following checklist provides a study guide for this chapter. When your study of the entire

chapter and end-of-chapter exercises is completed, you should be able to

write out the meanings of the terms listed here in the margin and understand each of the

related concepts. These terms are particularly important and are set in italic, bold, and color
type in the text.

estimate the change in ideal gas properties in a compressible flow.

calculate Mach number value for a specific compressible flow.

estimate when a flow may be considered incompressible and when it must be considered

compressible to preserve accuracy.

estimate details of isentropic flows of an ideal gas though converging, diverging, and

converging–diverging passages.

estimate details of nonisentropic Fanno and Rayleigh flows and flows across normal shock

waves.

explain the analogy between compressible and open-channel flows.

Some of the important equations in this chapter are:

Ideal gas equation 

of state
(11.1)

Internal energy change (11.5)

Enthalpy (11.6) ȟ � ǔ �
p

r

 ǔ2 � ǔ1 � cv1T2 � T12

 r �
p

RT
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Enthalpy change (11.9)

Specific heat difference (11.12)

Specific heat ratio (11.13)

Specific heat at

constant pressure
(11.14)

Specific heat at

constant volume
(11.15)

First Tds equation (11.16)

Second Tds equation (11.18)

Entropy change (11.21)

Entropy change (11.22)

Isentropic flow (11.25)

Speed of sound (11.34)

Speed of sound in gas (11.36)

Speed of sound in liquid (11.38)

Mach cone angle (11.39)

Mach number (11.46)

Isentropic flow (11.48)

Isentropic flow (11.49)

Isentropic flow (11.56)

Isentropic flow (11.59)

Isentropic flow (11.60)

Isentropic flow-critical 

pressure ratio (11.61)

Isentropic flow-critical

temperature ratio
(11.63) 

T*

T0

�
2

k � 1

 
p*

p0

� a
2

k � 1
b

k�1k�12

 
r

r0

� e
1

1 � 3 1k � 12�2 4Ma2
f

1�1k�12

 
p

p0

� e
1

1 � 3 1k � 12�2 4Ma2
f

k�1k�12

 
T

T0

�
1

1 � 3 1k � 12�2 4Ma2

 
dr

r
�

dA

A
 

Ma2

11 � Ma22

 
dV

V
� �

dA

A
 

1

11 � Ma22

 Ma �
V

c

 sin a �
c

V
�

1

Ma

 c � B
Ev

r

 c � 2RTk

 c � Ba
0p

0r
b

s

 
p

rk
� constant

 s2 � s1 � cp ln 
T2

T1

� R ln 
p2

p1

 s2 � s1 � cv ln 
T2

T1

� R ln 
r1

r2

 T ds � dȟ �  a
1

r
b dp

 T ds � dǔ � pd  a
1

r
b

 cv �
R

k � 1

 cp �
Rk

k � 1

 k �
cp

cv

 cp � cv � R

 ȟ2 � ȟ1 � cp1T2 � T12
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Isentropic flow (11.71)

Fanno flow        (11.98)

Fanno flow (11.101)

Fanno flow (11.103)

Fanno flow (11.107)

Fanno flow (11.109)

Rayleigh flow (11.123)

Rayleigh flow (11.128)

Rayleigh flow (11.129)

Rayleigh flow
(11.131)

Rayleigh flow (11.133)

Normal shock (11.149)

Normal shock (11.150)

Normal shock (11.151)

Normal shock (11.154)

Normal shock (11.156) 
p0,y

p0,x
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Problem available in WileyPLUS at instructor’s discretion.

Tutoring problem available in WileyPLUS at instructor’s discretion.

Problem is related to a chapter video available in WileyPLUS.

Problem to be solved with aid of programmable calculator or computer.

Open-ended problem that requires critical thinking. These problems require various assumptions to provide the necessary

input data. There are not unique answers to these problems.

GO

*
†

Go to Appendix G (WileyPLUS or the book’s website, www.wiley.
com/college/munson) for a set of review problems with answers.
Detailed solutions can be found in the Student Solution Manual and

Study Guide for Fundamentals of Fluid Mechanics, by Munson 
et al. (© 2013 John Wiley and Sons, Inc.).

Review Problems

Conceptual Questions

11.1C You are watching fireworks on the Fourth of July and no-
tice that you hear the sound of a firework exploding 2 seconds af-
ter you see the flash of the explosion. Approximately how far away
are the fireworks?

a) About the length of a football field.

b) About one-half of a kilometer.

c) About a kilometer.

d) About two kilometers.

11.2C An object, shown as the dark circle below, is moving along
and emitting sound waves. The sound waves that were emitted by
the object at times �1 second (one second ago), �2 seconds, and
�3 seconds are shown below.

If the Mach number of the object is equal to unity, which is the
correct picture for the sound waves?

a) Picture A. b) Picture B. c) Picture C. d) Picture D.

Additional conceptual questions are available in WileyPLUS at 
the instructor’s discretion.

Sound wave emitted at
 time = −1 second
 time = −2 second
 time = −3 second

Object
Time = 0

(a) (b) (c) (d)

Problems

Note: Unless specific values of required fluid properties are
given in the problem statement, use the values found in the
tables on the inside of the front cover. Answers to the even-
numbered problems are listed at the end of the book. The
Lab Problems as well as the videos that accompany problems
can be accessed in WileyPLUS or the book’s website, www.
wiley.com/college/munson.

Section 11.1 Ideal Gas Relationships

11.1 Distinguish between flow of an ideal gas and inviscid
flow of a fluid.

11.2 Compare the density of standard air listed in Table 1.4
with the value of standard air calculated with the ideal gas equa-
tion of state, and comment on what you discover.

11.3 Two kilogram mass of air is heated in a closed, rigid
container from 25 C, 103 kPa to 260 C. Estimate the final pres-
sure of the air and the entropy rise involved.

11.4 Air flows steadily between two sections in a duct. At
section (1), the temperature and pressure are T1 � 80 C, p1 � 301
kPa(abs), and at section (2), the temperature and pressure are 
T2 � 180 C, p2 � 181 kPa(abs). Calculate the (a) change in in-
ternal energy between sections (1) and (2), (b) change in enthalpy
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between sections (1) and (2), (c) change in density between sec-
tions (1) and (2), and (d) change in entropy between sections (1)
and (2). How would you estimate the loss of available energy be-
tween the two sections of this flow?

11.5 Determine, in SI units, nominal values of cp and for: (a)
air, (b) carbon dioxide, (c) helium. Use information provided in
Table 1.4.

11.6 As demonstrated in Video V11.1 fluid density differ-
ences in a flow may be seen with the help of a schlieren optical
system. Discuss what variables affect fluid density and the differ-
ent ways in which a variable density flow can be achieved.

11.7 Describe briefly how a schlieren optical visualization
system (Videos V11.1 and V11.5, also Fig. 11.4) works. How
else might density changes in a fluid flow be made visible to the
eye?

11.8 Three kilograms of hydrogen contained in a nondeforming
sealed vessel are cooled from 400 �C, 400 kPa(abs) until the
hydrogen pressure is 100 kPa(abs). Calculate the change in in-
ternal energy, enthalpy, and entropy associated with this cooling
process.

11.9 Helium is compressed isothermally from 121 kPa(abs)
to 301 kPa(abs). Determine the entropy change associated with this
process.

11.10 Air at 101.3 kPa and 20 �C is compressed adiabati-
cally by a centrifugal compressor to a pressure of 690 kPa. What
is the minimum temperature rise possible? Explain.

11.11 Methane is compressed adiabatically from 100
kPa(abs) and 25 �C to 200 kPa(abs). What is the minimum com-
pressor exit temperature possible? Explain.

11.12 Air expands adiabatically through a turbine from a
pressure and temperature of 1240 kPa, 615 K to a pressure of
101.3 kPa. If the actual temperature change is 85% of the ideal
temperature change, determine the actual temperature of the ex-
panded air and the actual enthalpy and entropy differences across
the turbine.

11.13 An expression for the value of cp for carbon dioxide
as a function of temperature is

where cp is in J/kg �K and T is in kelvin. Compare the change in
enthalpy of carbon dioxide using the constant value of cp (see
Table 1.4) with the change in enthalpy of carbon dioxide using
the expression above, for T2 � T1 equal to (a) 5 K, (b) 555 K,
(c) 1666 K. Set T1 � 300 K.

Section 11.2 Mach Number and Speed of Sound

11.14 Confirm the speed of sound for air at 20 �C listed in
Table B.2.

11.15 From Table B.1 we can conclude that the speed of
sound in water at 20 �C is 1481 m/s. Is this value of c consistent
with the value of bulk modulus, listed in Table 1.3?

11.16 If the observed speed of sound in steel is 5300 m/s,
determine the bulk modulus of elasticity of steel in N/m3. The den-
sity of steel is nominally 7790 kg/m3. How does your value of Ev

for steel compare with for water at 15.6 �C? Compare the speeds
of sound in steel, water, and air at standard atmospheric pressure
and 15 �C and comment on what you observe.

11.17 If a high-performance aircraft is able to cruise at a Mach
number of 3.0 at an altitude 24,384 m, how fast is this in m/s?

Ev

Ev,

cp � 1544 �
3.44 � 105

T
	

4.13 � 106

T2

GO

cv

11.18 Compare values of the speed of sound in m/s at 20 �C in
the following gases: (a) air, (b) carbon dioxide, (c) helium.

11.19 Determine the Mach number of a car moving in stan-
dard air at a speed of (a) 40 km/h, (b) 90 km/h, and (c) 160 km/h.

11.20 The flow of an ideal gas may be considered incompressible
if the Mach number is less than 0.3. Determine the velocity level
in m/s for Ma � 0.3 in the following gases: (a) standard air,
(b) hydrogen at 20 �C.

Section 11.3 Categories of Compressible Flow

11.21 A schlieren photo of a bullet moving through air (see
Video V11.10) at 101.3 kPa and 20 �C indicates a Mach cone an-
gle of 28�. How fast was the bullet moving in m/s?

11.22 At a given instant of time, two pressure waves, each
moving at the speed of sound, emitted by a point source moving
with constant velocity in a fluid at rest are shown in Fig. P11.22.
Determine the Mach number involved and indicate with a sketch
the instantaneous location of the point source.

0.15 m

0.1 m

0.01 m

■ Figure P11.22

11.23 At a given instant of time, a pressure wave moving at the
speed of sound, which is emitted by a point source moving with
constant velocity along the line A–B in a fluid at rest, is shown in
Fig. P11.23. If the point source Mach number is 0.8, sketch, for
the given instant, the pressure wave emitted by the point source
when it was at location B.

1 m

10 m

B A

■ Figure P11.23
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11.24 At a given instant of time, two pressure waves, each
moving at the speed of sound, emitted by a point source moving
with constant velocity in a fluid at rest, are shown in Fig. P11.24.
Determine the Mach number involved and indicate with a sketch
the instantaneous location of the point source.

11.34 Determine the static pressure to stagnation pressure
ratio associated with the following motion in standard air: (a) a
runner moving at the rate of 16 km/h, (b) a cyclist moving at the
rate of 64 km/h, (c) a car moving at the rate of 104 km/h, (d) an
airplane moving at the rate of 800 km/h.

11.35 The static pressure to stagnation pressure ratio at a point in
a gas flow field is measured with a Pitot-static probe as being equal
to 0.6. The stagnation temperature of the gas is 20 �C. Determine
the flow speed in m/s and the Mach number if the gas is air. What
error would be associated with assuming that the flow is incom-
pressible?

11.36 The stagnation pressure and temperature of air flow-
ing past a probe are 120 kPa(abs) and 100 �C, respectively. The
air pressure is 80 kPa(abs). Determine the airspeed and the Mach
number considering the flow to be (a) incompressible, (b) com-
pressible.

11.37 The stagnation pressure indicated by a Pitot tube
mounted on an airplane in flight is 45 kPa(abs). If the aircraft is
cruising in standard atmosphere at an altitude of 10,000 m, deter-
mine the speed and Mach number involved.

11.38 Helium at 20 �C and 101.3 kPa in a large tank flows
steadily and isentropically through a converging nozzle to a re-
ceiver pipe. The cross-sectional area of the throat of the converg-
ing passage is . Determine the mass flowrate
through the duct if the receiver pressure is (a) 68 kPa, (b) 34 kPa.
Sketch temperature–entropy diagrams for situations (a) and (b).

*11.39 An ideal gas enters subsonically and flows isen-
tropically through a choked converging–diverging duct having a
circular cross-sectional area A that varies with axial distance from
the throat, x, according to the formula

where A is in square meters and x is in meters. For this flow situ-
ation, sketch the side view of the duct and graph the variation of
Mach number, static temperature to stagnation temperature ratio,
T/T0, and static pressure to stagnation pressure ratio, p/p0, through
the duct from x � �0.2 m to x � 	0.2 m. Also show the possi-
ble fluid states at x � �0.2 m, 0 m, and 	0.2 m using tempera-
ture-entropy coordinates. Consider the gas as being helium (use
0.051 
 Ma 
 5.193). Sketch on your pressure variation graph the
nonisentropic paths that would occur with over- and underexpanded
duct exit flows (see Video V11.7) and explain when they will oc-
cur. When will isentropic supersonic duct exit flow occur?

*11.40 An ideal gas enters supersonically and flows isen-
tropically through the choked converging–diverging duct described
in Problem 11.39. Graph the variation of Ma, T/T0, and p/p0 from
the entrance to the exit sections of the duct for helium (use 0.051

 Ma 
 5.193). Show the possible fluid states at x � �0.2 m,
0 m, and 	0.2 m using temperature–entropy coordinates. Sketch
on your pressure variation graph the nonisentropic paths that would
occur with over- and underexpanded duct exit flows (see Video
V11.7) and explain when they will occur. When will isentropic
supersonic duct exit flow occur?

11.41 An ideal gas is to flow isentropically from a large tank
where the air is maintained at a temperature and pressure of 15 �C
and 551 kPa to standard atmospheric discharge conditions. De-
scribe in general terms the kind of duct involved and determine the
duct exit Mach number and velocity in m/s if the gas is air.

11.42 An ideal gas flows isentropically through a converging–
diverging nozzle. At a section in the converging portion of the noz-
zle, A1 � 0.1 m2, p1 � 600 kPa(abs), T1 � 20 �C, and Ma1 � 0.6.
For section (2) in the diverging part of the nozzle, determine A2,
p2, and T2 if Ma2 � 3.0 and the gas is air.

A � 0.1 	 x2

4.6 � 10�3 m2

GO

25 cm

5 cm

12.5 cm

■ Figure P11.24

11.25 Sound waves are very small-amplitude pressure
pulses that travel at the “speed of sound.” Do very large-amplitude
waves such as a blast wave caused by an explosion (see Video
V11.8) travel less than, equal to, or greater than the speed of sound?
Explain.

11.26 How would you estimate the distance between you and an
approaching storm front involving lightning and thunder?

11.27 If a new Boeing 787 Dreamliner cruises at a Mach
number of 0.87 at an altitude of 9144 m, how fast is this in m/s?

11.28 At the seashore, you observe a high-speed aircraft
moving overhead at an elevation of 3048 m. You hear the plane
8 s after it passes directly overhead. Using a nominal air tem-
perature of 4.4 �C, estimate the Mach number and speed of the
aircraft.

11.29 Explain how you could vary the Mach number but not
the Reynolds number in airflow past a sphere. For a constant
Reynolds number of 300,000, estimate how much the drag coeffi-
cient will increase as the Mach number is increased from 0.3 to 1.0.

Section 11.4 Isentropic Flow of an Ideal Gas

11.30 Starting with the enthalpy form of the energy equation 
(Eq. 5.69), show that for isentropic flows, the stagnation tempera-
ture remains constant. Why is this important?

11.31 Starting with Eq. 11.52, prove that the stagnation enthalpy
(and temperature) of an ideal gas remains constant during isen-
tropic flow. Does this result fix the stagnation state for the flow?
Explain. Using Eq. 5.69, comment on heat transfer and shaft work
during any constant stagnation state process.

11.32 Air flows steadily and isentropically from standard
atmospheric conditions to a receiver pipe through a converging
duct. The cross-sectional area of the throat of the converging
duct is . Determine the mass flowrate through
the duct if the receiver pressure is (a) 68 kPa, (b) 34 kPa. Sketch
temperature–entropy diagrams for situations (a) and (b). Verify re-
sults obtained with values from the appropriate graph in Appendix
D with calculations involving ideal gas equations. Is condensation
of water vapor a concern? Explain.

11.33 Determine the critical pressure and temperature ratios for
(a) air, (b) carbon dioxide, (c) helium.

4.6 � 10�3 m2
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11.43 Upstream of the throat of an isentropic converging–
diverging nozzle at section (1), V1 � 150 m/s, p1 � 100 kPa(abs),
and T1 � 20 C. If the discharge flow is supersonic and the throat
area is 0.1 m2, determine the mass flowrate in kg/s for the flow of
air.

11.44 The flow blockage associated with the use of an
intrusive probe can be important. Determine the percentage in-
crease in section velocity corresponding to a 0.5% reduction in
flow area due to probe blockage for airflow if the section area
is 1.0 m2, T0 � 20 C, and the unblocked flow Mach numbers
are (a) Ma � 0.2, (b) Ma � 0.8, (c) Ma � 1.5, (d) Ma � 30.

11.45 (See Fluids in the News article titled “Rocket Nozzles,”
Section 11.4.2.) Comment on the practical limits of area ratio for
the diverging portion of a converging–diverging nozzle designed
to achieve supersonic exit flow.

Section 11.5.1 Adiabatic Constant Area Duct Flow with
Friction (Fanno Flow)

11.46 An ideal gas enters [section (1)] an insulated, constant
cross-sectional area duct with the following properties:

For Fanno flow, determine corresponding values of fluid tempera-
ture and entropy change for various levels of pressure and plot the
Fanno line if the gas is helium.

11.47 For Fanno flow, prove that

and in so doing show that when the flow is subsonic, friction ac-
celerates the fluid, and when the flow is supersonic, friction decel-
erates the fluid.

11.48 Standard atmospheric air (T0 � 15 C, p0 � 101.3 kPa)
is drawn steadily through a frictionless and adiabatic converging noz-
zle into an adiabatic, constant cross-sectional area duct. The duct
is 3 m long and has an inside diameter of 0.15 m. The average
friction factor for the duct may be estimated as being equal to 
0.03. What is the maximum mass flowrate in kg/s through the duct?
For this maximum flowrate, determine the values of static temper-
ature, static pressure, stagnation temperature, stagnation pressure,
and velocity at the inlet [section (1)] and exit [section (2)] of the
constant area duct. Sketch a temperature–entropy diagram for this
flow.

11.49 The duct in Problem 11.48 is shortened by 50%. The
duct discharge pressure is maintained at the choked flow value de-
termined in Problem 11.48. Determine the change in mass flowrate
through the duct associated with the 50% reduction in length. The
average friction factor remains constant at a value of 0.03.

11.50 If the same mass flowrate of air obtained in Problem
11.48 is desired through the shortened duct of Problem 11.49, de-
termine the back pressure, p2, required. Assume f remains constant
at a value of 0.03.

11.51 If the average friction factor of the duct of Example
11.12 is changed to (a) 0.01 or (b) 0.03, determine the maximum
mass flowrate of air through the duct associated with each new
friction factor; compare with the maximum mass flowrate value of
Example 11.12.

11.52 If the length of the constant area duct of Example 11.12 is
changed to (a) 1 m or (b) 3 m, and all other specifications in the

GO

dV

V
�

fk1Ma2�22 1dx�D2

1 � Ma2

 Ma1 � 0.2

 p0 � 101 kPa1abs2

 T0 � 293 K

problem statement remain the same, determine the maximum mass
flowrate of air through the duct associated with each new length;
compare with the maximum mass flowrate of Example 11.12.

11.53 The duct of Example 11.12 is lengthened by 50%. If the
duct discharge pressure is set at a value of pd � 46.2 kPa(abs), de-
termine the mass flowrate of air through the lengthened duct. The
average friction factor for the duct remains constant at a value 0.02.

11.54 Air flows adiabatically between two sections in a
constant area pipe. At upstream section (1), p0,1 � 689 kPa,
T0,1 � 333 K, and Ma1 � 0.5. At downstream section (2), the
flow is choked. Estimate the magnitude of the force per unit
cross-sectional area exerted by the inside wall of the pipe on
the fluid between sections (1) and (2).

Section 11.5.2 Frictionless Constant Area Duct Flow
with Heat Transfer (Rayleigh Flow)

11.55 Cite an example of an actual subsonic flow of practical im-
portance that may be approximated with a Rayleigh flow.

11.56 Standard atmospheric air [T0 � 288 K, p0 � 101
kPa(abs)] is drawn steadily through an isentropic converging noz-
zle into a frictionless diabatic (q � 500 kJ/kg) constant area duct.
For maximum flow, determine the values of static temperature, sta-
tic pressure, stagnation temperature, stagnation pressure, and flow
velocity at the inlet [section (1)] and exit [section (2)] of the con-
stant area duct. Sketch a temperature–entropy diagram for this flow.

11.57 Air enters a 0.15 m inside diameter duct with p1 �
138 kPa, T1 � 27 C, and V1 � 60 m/s. What frictionless heat ad-
dition rate in J/s is necessary for an exit gas temperature T2 �
815 C? Determine p2, V2, and Ma2 also.

11.58 Air enters a length of constant area pipe with p1 �
200 kPa(abs), T1 � 500 K, and V1 � 400 m/s. If 500 kJ/kg of en-
ergy is removed from the air by frictionless heat transfer between
sections (1) and (2), determine p2, T2, and V2. Sketch a temperature–
entropy diagram for the flow between sections (1) and (2).

11.59 An ideal gas enters [section (1)] a frictionless, constant area
duct with the following properties:

For Rayleigh flow, determine corresponding values of fluid tem-
perature and entropy change for various levels of pressure and plot
the Rayleigh line if the gas is helium.

11.60 Air flows through a constant area pipe. At an upstream
section (1), p1 � 101 kPa, T1 � 294 K, and V1 � 60 m/s. Down-
stream at section (2), p2 � 68 kPa and T2 � 977 K. For this flow,
determine the stagnation temperature and pressure ratios, T0,2/T0,1

and p0,2/p0,1, and the heat transfer per unit mass of air flowing be-
tween sections (1) and (2). Is the flow between sections (1) and
(2) frictionless? Explain.

11.61 Describe what happens to Fanno flow when heat transfer is
allowed to occur. Is this the same as a Rayleigh flow with friction
considered?

Section 11.5.3 Normal Shock Waves

11.62 The Mach number and stagnation pressure of air are
2.0 and 200 kPa(abs) just upstream of a normal shock. Estimate
the stagnation pressure loss across the shock.

11.63 The stagnation pressure ratio across a normal shock
in an airflow is 0.6. Estimate the Mach number of the flow enter-
ing the shock.

 Ma1 � 0.2

 p0 � 101 kPa1abs2

 T0 � 293 K
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11.64 Just upstream of a normal shock in an airflow, Ma �
3.0, T � 333 K, and p � 206 kPa. Estimate values of Ma, T0, T,
p0, p, and V downstream of the shock.

11.65 A total pressure probe like the one shown in Video
V3.8 is inserted into a supersonic airflow. A shock wave forms just
upstream of the impact hole. The probe measures a total pressure
of 500 kPa(abs). The stagnation temperature at the probe head is
500 K. The static pressure upstream of the shock is measured with
a wall tap to be 100 kPa(abs). From these data, estimate the Mach
number and velocity of the flow.

11.66 The Pitot tube on a supersonic aircraft (see Video
V3.8) cruising at an altitude of 9144 m senses a stagnation pres-
sure of 83 kPa. If the atmosphere is considered standard, determine
the airspeed and Mach number of the aircraft. A shock wave is pre-
sent just upstream of the probe impact hole.

11.67 An aircraft cruises at a Mach number of 2.0 at an al-
titude of 15 km. Inlet air is decelerated to a Mach number of 0.4
at the engine compressor inlet. A normal shock occurs in the inlet
diffuser upstream of the compressor inlet at a section where the
Mach number is 1.2. For isentropic diffusion, except across the
shock, and for standard atmosphere, determine the stagnation tem-
perature and pressure of the air entering the engine compressor.

11.68 Determine, for the airflow through the frictionless and
adiabatic converging–diverging duct of Example 11.8, the ratio of
duct exit pressure to duct inlet stagnation pressure that will result
in a standing normal shock at: (a) x � 	0.1 m, (b) x � 	0.2 m,
(c) x � 	0.4 m. How large is the stagnation pressure loss in each
case?

11.69 A normal shock is positioned in the diverging portion
of a frictionless, adiabatic, converging–diverging airflow duct where
the cross-sectional area is 0.009 m2 and the local Mach number is
2.0. Upstream of the shock, p0 � 1378 kPa and T0 � 667 K. If the
duct exit area is 0.014 m2, determine the exit area temperature and
pressure and the duct mass flowrate.

11.70 Supersonic airflow enters an adiabatic, constant area
(inside diameter � 0.3 m) 9 m long pipe with Ma1 � 3.0. The pipe
friction factor is estimated to be 0.02. What ratio of pipe exit pres-
sure to pipe inlet stagnation pressure would result in a normal shock
wave standing at (a) x � 1.5 m, or (b) x � 3 m, where x is the
distance downstream from the pipe entrance? Determine also the
duct exit Mach number and sketch the temperature–entropy dia-
gram for each situation.

11.71 Supersonic airflow enters an adiabatic, constant area
pipe (inside diameter � 0.1 m) with Ma1 � 2.0. The pipe friction
factor is 0.02. If a standing normal shock is located right at the
pipe exit, and the Mach number just upstream of the shock is 1.2,
determine the length of the pipe.

GO

11.72 Air enters a frictionless, constant area duct with 
Ma1 � 2.0, T0,1 � 15 �C, and p0,1 � 101.3 kPa. The air is decel-
erated by heating until a normal shock wave occurs where the lo-
cal Mach number is 1.5. Downstream of the normal shock, the sub-
sonic flow is accelerated with heating until it chokes at the duct
exit. Determine the static temperature and pressure, the stagnation
temperature and pressure, and the fluid velocity at the duct en-
trance, just upstream and downstream of the normal shock, and at
the duct exit. Sketch the temperature–entropy diagram for this flow.

11.73 Air enters a frictionless, constant area duct with 
Ma � 2.5, T0 � 20 �C, and p0 � 101 kPa(abs). The gas is decel-
erated by heating until a normal shock occurs where the local Mach
number is 1.3. Downstream of the shock, the subsonic flow is
accelerated with heating until it exits with a Mach number of 0.9.
Determine the static temperature and pressure, the stagnation tem-
perature and pressure, and the fluid velocity at the duct entrance,
just upstream and downstream of the normal shock, and at the duct
exit. Sketch the temperature–entropy diagram for this flow.

■ Lifelong Learning Problems

11.1LL Is there a limit to how fast an object can move through
the atmosphere? Explain.

11.2LL Discuss the similarities between hydraulic jumps in open-
channel flow and shock waves in compressible flow. Explain how
this knowledge can be useful.

11.3LL Estimate the surface temperature associated with the
reentry of the Space Shuttle into the Earth’s atmosphere. Why is
knowing this important?

11.4LL [See Fluids in the News article titled “Hilsch Tube
(Ranque Vortex Tube),” Section 11.1.] Explain why a Hilsch tube
works and cite some high and low gas temperatures actually
achieved. What is the most important limitation of a Hilsch tube,
and how can it be overcome?

11.5LL [See Fluids in the News article titled “Supersonic and
Compressible Flows in Gas Turbines,” Section 11.3.] Using typi-
cal physical dimensions and rotation speeds of manufactured gas
turbine rotors, consider the possibility that supersonic fluid veloc-
ities relative to blade surfaces are possible. How do designers use
this knowledge?

11.6LL Develop useful equations describing the constant temper-
ature (isothermal) flow of an ideal gas through a constant cross-
sectional area pipe. What important practical flow situations would
these equations be useful for? How are real gas effects estimated?

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for fluid
mechanics are provided in WileyPLUS or on the book’s website,
www.wiley.com/college/munson.
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